Skip to main content

Advertisement

Log in

Fabrication of ionic liquid stabilized MXene interface for electrochemical dopamine detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Development of MXene (Ti3C2Cl2)-based sensing platforms by exploiting their inherent active electrochemistry is highly challenging due to their characteristic poor stability in air and water. Herein, we report a cost-effective methodology to deposit MXene on a conductive graphitic pencil electrode (GPE). MXenes can provide active surface area due to their clever morphology of accordion-like sheets; however, the disposition to stack together limits their potential applications. A task-specific ionic liquid (1-methyl imidazolium acetate) is utilized as a multiplex host material to engineer MXene interface via π-π interactions as well as to act as a selective binding site for biomolecules. The resulting IL-MXene/GPE interface proved to be a highly stable interface owing to good interactions between MXene and IL that inhibited electrode leaching and boosted electron transfer at the electrode–electrolyte interface. It resulted in robust dopamine (DA) oxidation with amplified faradaic response and enhanced sensitivity (9.61 µA µM−1 cm−2) for DA detection. This fabricated sensor demonstrated large linear range (10 µM − 2000 µM), low detection limit (702 nM), high reproducibility, and good selectivity. We anticipate that such platform will pave the way for the development of stable and economically viable MXene-based sensors without sacrificing their inherent properties.

Graphical abstract

Scheme 1 Schematic illustration of the IL-MXene/GPE fabrication and oxidative process towards non-enzymatic dopamine sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun F et al (2020) Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods 17:1156–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu C, Goel P, Kaeser PS (2021) Spatial and temporal scales of dopamine transmission. Nat Rev Neurosci 22:345

  3. Lu Z et al (2020) A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chem Eng J 389:124417

  4. Shi Z et al (2021) Screen-printed analytical strip constructed with bacteria-templated porous N-doped carbon nanorods/Au nanoparticles for sensitive electrochemical detection of dopamine molecules. Biosens Bioelectron:113303

  5. Bas SZ et al (2019) A novel electrochemical sensor based on metal ion infiltrated block copolymer thin films for sensitive and selective determination of dopamine. ACS Appl Nano Mater 2:7311–7318

    Article  CAS  Google Scholar 

  6. Shu Y et al (2021) Isolated cobalt atoms on N-doped carbon as nanozymes for hydrogen peroxide and dopamine detection. ACS Appl Nano Mater 4:7954

  7. Ma F et al (2020) Sonication-triggered rolling of Janus porous nanomembranes for electrochemical sensing of dopamine and ascorbic acid. ACS Appl Nano Mater 3:10032–10039

    Article  CAS  Google Scholar 

  8. Gao F et al (2021) All-polymer free-standing electrodes for flexible electrochemical sensors. Sensors Actuators B Chem 334:129675

    Article  CAS  Google Scholar 

  9. Kokulnathan T et al (2021) Rational confinement of yttrium vanadate within three-dimensional graphene aerogel: electrochemical analysis of monoamine neurotransmitter (dopamine). ACS Appl Mater Interfaces 13:10987–10995

    Article  CAS  PubMed  Google Scholar 

  10. Vázquez-Guardado A et al (2018) Enzyme-free plasmonic biosensor for direct detection of neurotransmitter dopamine from whole blood. Nano Lett 19:449–454

    Article  PubMed  Google Scholar 

  11. Huang C-W, Lu MS-C (2011) Electrochemical detection of the neurotransmitter dopamine by nanoimprinted interdigitated electrodes and a CMOS circuit with enhanced collection efficiency. IEEE Sens J 11:1826–1831

    Article  CAS  Google Scholar 

  12. Wang P et al (2021) Scalable solution-processed fabrication approach for high-performance silver nanowire/MXene hybrid transparent conductive films. Nanomaterials 11:1360

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma Y et al (2018) 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12:3209–3216

    Article  CAS  PubMed  Google Scholar 

  14. Jiang Y et al (2018) Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor. Chem Eng J 339:547–556

    Article  CAS  Google Scholar 

  15. Wu M et al (2021) Polylysine-modified MXene nanosheets with highly loaded glucose oxidase as cascade nanoreactor for glucose decomposition and electrochemical sensing. J Colloid Interface Sci 586:20–29

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q et al (2020) Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem Eng J 401:126129

    Article  CAS  Google Scholar 

  17. Zheng Y et al (2021) Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J 420:127720

    Article  CAS  Google Scholar 

  18. Tu X et al (2020) Mxene/carbon nanohorn/β-cyclodextrin-metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. J Hazard Mater 396:122776

    Article  CAS  PubMed  Google Scholar 

  19. Zhong W et al (2021) MXene@ Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples. Food Chem 360:130006

    Article  CAS  PubMed  Google Scholar 

  20. Liu J et al (2019) MXene-Enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv Func Mater 29:1807326

    Article  Google Scholar 

  21. Ma Y et al (2017) A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8:1–8

    Article  Google Scholar 

  22. Wang S et al (2021) Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics. Chem Eng J 408:127363

    Article  CAS  Google Scholar 

  23. Kalambate PK, Sinha A, Li Y, Shen Y, Huang Y (2020) An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim Acta 187:1–12

    Article  Google Scholar 

  24. Chen WY et al (2020) Surface functionalization of Ti3C2T x MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14:11490–11501

    Article  CAS  PubMed  Google Scholar 

  25. Luo J et al (2021) Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J 406:126898

    Article  CAS  Google Scholar 

  26. Xu Q et al (2021) Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin. J Electroanal Chem 880:114765

    Article  CAS  Google Scholar 

  27. Chen S et al (2021) Polydopamine bridged MXene and NH2-MWCNTs nanohybrid for high-performance electrochemical sensing of acetaminophen. Appl Surf Sci 570:151149

    Article  CAS  Google Scholar 

  28. Nagles E, García-Beltrán O, Calderón JA (2017) Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modified with single walled carbon nanotubes and ionic liquids. Electrochim Acta 258:512–523

    Article  CAS  Google Scholar 

  29. Rauf S et al (2020) Ionic liquid coated zerovalent manganese nanoparticles with stabilized and enhanced peroxidase-like catalytic activity for colorimetric detection of hydrogen peroxide. Mater Res Express 7:035018

    Article  CAS  Google Scholar 

  30. Li J et al (2017) A novel ionic liquid functionalized graphene oxide supported gold nanoparticle composite film for sensitive electrochemical detection of dopamine. RSC Adv 7:2315–2322

    Article  CAS  Google Scholar 

  31. Kunpatee K, Traipop S, Chailapakul O, Chuanuwatanakul S (2020) Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sensors Actuators B Chem 314:128059

    Article  CAS  Google Scholar 

  32. Pourtaheri E, Taher MA, Ali GA, Agarwal S, Gupta VK (2019) Electrochemical detection of gliclazide and glibenclamide on ZnIn2S4 nanoparticles-modified carbon ionic liquid electrode. J Mol Liq 289:111141

    Article  CAS  Google Scholar 

  33. Boobphahom S, Ruecha N, Rodthongkum N, Chailapakul O, Remcho VT (2019) A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal Chim Acta 1083:110–118

    Article  CAS  PubMed  Google Scholar 

  34. Yu L et al (2020) Ionic liquid combined with NiCo2O4/rGO enhances electrochemical oxygen sensing. Talanta 209:120515

    Article  CAS  PubMed  Google Scholar 

  35. Wang X et al (2014) Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. Talanta 128:373–378

    Article  CAS  PubMed  Google Scholar 

  36. Sun W et al (2012) Poly (methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Anal Chim Acta 751:59–65

    Article  CAS  PubMed  Google Scholar 

  37. Chen S et al (2018) Polyoxometalate-coupled MXene nanohybrid via poly (ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 10:20043–20052

    Article  CAS  PubMed  Google Scholar 

  38. Li M et al (2019) Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 141:4730–4737

    Article  CAS  PubMed  Google Scholar 

  39. Zarif F et al (2018) Ionic liquid coated iron nanoparticles are promising peroxidase mimics for optical determination of H 2 O 2. Microchim Acta 185:1–9

    Article  CAS  Google Scholar 

  40. Amara U et al (2021) Self-assembled perylene-tetracarboxylic acid/multi-walled carbon nanotube adducts based modification of screen-printed interface for efficient enzyme immobilization towards glucose biosensing. Microchem J 165:106109

    Article  CAS  Google Scholar 

  41. Riaz S, Feng W, Khan AF, Nawaz MH (2016) Sonication‐induced self‐assembly of polymeric porphyrin–fullerene: formation of nanorings. J Appl Polym Sci 133:43537

  42. Alhabeb M et al (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem Mater 29:7633–7644

    Article  CAS  Google Scholar 

  43. Li Y et al (2020) A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 19:894–899

    Article  CAS  PubMed  Google Scholar 

  44. Pu J-H et al (2020) A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 74:104814

  45. Han M et al (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8:21011–21019

    Article  CAS  PubMed  Google Scholar 

  46. Ali A, Belaidi A, Ali S, Helal MI, Mahmoud KA (2016) Transparent and conductive Ti 3 C 2 T x (MXene) thin film fabrication by electrohydrodynamic atomization technique. J Mater Sci Mater Electron 27:5440–5445

    Article  CAS  Google Scholar 

  47. Ling Z et al (2014) Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci 111:16676–16681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu Z et al (2019) Ionic liquid/poly-l-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochim Acta 295:514–523

    Article  CAS  Google Scholar 

  49. Varol TÖ et al (2019) Fabrication of graphene/azobenzene-perylene diimide derivative modified electrochemical sensors for the dopamine detection based on full factorial experimental design. Measurement 147:106867

    Article  Google Scholar 

  50. Joshi S, Kamble VB, Kumar M, Umarji AM, Srivastava G (2016) Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J Alloy Compd 654:460–466

    Article  CAS  Google Scholar 

  51. Amara U et al (2021) Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection. RSC Adv 11:25084–25095

    Article  CAS  Google Scholar 

  52. Kokulnathan T, Anthuvan AJ, Chen S-M, Chinnuswamy V, Kadirvelu K (2018) Trace level electrochemical determination of the neurotransmitter dopamine in biological samples based on iron oxide nanoparticle decorated graphene sheets. Inorg Chem Front 5:705–718

    Article  CAS  Google Scholar 

  53. Amara U et al (2021) Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection. Microchim Acta 188:1–13

    Article  Google Scholar 

  54. Sharifuzzaman M et al (2020) An electrodeposited MXene-Ti3C2Tx nanosheets functionalized by task-specific ionic liquid for simultaneous and multiplexed detection of bladder cancer biomarkers. Small 16:2002517

    Article  CAS  Google Scholar 

  55. Zhou Y et al (2014) Selective determination of dopamine and uric acid using electrochemical sensor based on poly (alizarin yellow R) film-modified electrode. Anal Methods 6:3474–3481

    Article  CAS  Google Scholar 

  56. Mercante LA et al (2015) Electrospun polyamide 6/poly (allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interfaces 7:4784–4790

    Article  CAS  PubMed  Google Scholar 

  57. Ramachandran R, Leng X, Zhao C, Xu Z-X, Wang F (2020) 2D siloxene sheets: a novel electrochemical sensor for selective dopamine detection. Appl Mater Today 18:100477

    Article  Google Scholar 

  58. Reddy S, Swamy BK, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86

    Article  CAS  Google Scholar 

  59. Hobbs CN, Johnson JA, Verber MD, Wightman RM (2017) An implantable multimodal sensor for oxygen, neurotransmitters, and electrophysiology during spreading depolarization in the deep brain. Analyst 142:2912–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhihua L et al (2021) Hypha-templated synthesis of carbon/ZnO microfiber for dopamine sensing in pork. Food Chem 335:127646

    Article  PubMed  Google Scholar 

  61. Prasad BB, Jauhari D, Tiwari MP (2013) A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens Bioelectron 50:19–27

    Article  Google Scholar 

  62. Jiang L-C, Zhang W-D (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407

    Article  CAS  PubMed  Google Scholar 

  63. Yola ML (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu 2 ZnSnS 4 NPs/Pt/gC 3 N 4 composite. Microchim Acta 188:1–13

    Article  Google Scholar 

  64. Karaman C, Karaman O, Atar N, Yola ML (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@ carbon dots and Cd 0.5 Zn 0.5 S/d-Ti 3 C 2 T x MXene composite for heart-type fatty acid–binding protein detection. Microchim Acta 188:1–15

    Article  Google Scholar 

  65. Wiench P, González Z, Menéndez R, Grzyb B, Gryglewicz G (2018) Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors Actuators B Chem 257:143–153

    Article  CAS  Google Scholar 

  66. Caetano FR, Felippe LB, Zarbin AJ, Bergamini MF, Marcolino-Junior LH (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sensors Actuators B Chem 243:43–50

    Article  CAS  Google Scholar 

  67. Deepika J, Sha R, Badhulika S (2019) A ruthenium (IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Microchim Acta 186:480

    Article  CAS  Google Scholar 

  68. de França CCL et al (2021) Development of novel paper-based electrochemical device modified with CdSe/CdS magic-sized quantum dots and application for the sensing of dopamine. Electrochim Acta 367:137486

    Article  Google Scholar 

  69. Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191

    Article  CAS  PubMed  Google Scholar 

  70. Sookhakian M, Basirun WJ, Goh BT, Woi PM, Alias Y (2019) Molybdenum disulfide nanosheet decorated with silver nanoparticles for selective detection of dopamine. Colloids Surf B Biointerfaces 176:80–86

    Article  CAS  PubMed  Google Scholar 

  71. Zheng J, Wang B, Ding A, Weng B, Chen J (2018) Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J Electroanal Chem 816:189–194

    Article  CAS  Google Scholar 

  72. de Matos Morawski F et al (2021) A novel electrochemical platform based on mesoporous silica/titania and gold nanoparticles for simultaneous determination of norepinephrine and dopamine. Mater Sci Eng C 120:111646

    Article  Google Scholar 

  73. Kaya HK et al (2021) A novel design thia-bilane structure-based molecular imprinted electrochemical sensor for sensitive and selective dopamine determination. Sensors Actuators B Chem 346:130425

  74. Dong Y, Liu J, Zheng J (2021) A sensitive dopamine electrochemical sensor based on hollow zeolitic imidazolate framework. Colloids Surf A Physicochem Eng Asp 608:125617

    Article  CAS  Google Scholar 

  75. Bahrami E, Amini R, Vardak S (2021) Electrochemical detection of dopamine via pencil graphite electrodes modified by Cu/CuxO nanoparticles. J Alloys Compd 855:157292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

UA acknowledges the financial support provided by HEC under the indigenous Ph.D. 5000 fellowship program (2PS5-179)/HEC/IS/2019) to pursue her Ph.D. at BZU Multan. MHN acknowledges the financial support provided by HEC (20-4993/R&D/HEC/14/614) and CUI (16-14/CRGP/CIIT/LHR/15/776).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalid Mahmood or Mian Hasnain Nawaz.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1596 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amara, U., Sarfraz, B., Mahmood, K. et al. Fabrication of ionic liquid stabilized MXene interface for electrochemical dopamine detection. Microchim Acta 189, 64 (2022). https://doi.org/10.1007/s00604-022-05162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05162-3

Keywords

Navigation