Skip to main content
Log in

How 3D printing can boost advances in analytical and bioanalytical chemistry

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

3D printing fabrication methods have received lately an enormous attention by the scientific community. Laboratories and research groups working on analytical chemistry applications, among others, have advantageously adopted 3D printing to fabricate a wide range of tools, from common laboratory hardware to fluidic systems, sample treatment platforms, sensing structures, and complete fully functional analytical devices. This technology is becoming more affordable over time and therefore preferred over the commonly used fabrication processes like hot embossing, soft lithography, injection molding and micromilling. However, to better exploit 3D printing fabrication methods, it is important to fully understand their benefits and limitations which are also directly associated to the properties of the materials used for printing. Costs, printing resolution, chemical and biological compatibility of the materials, design complexity, robustness of the printed object, and integration with commercially available systems represent important aspects to be weighted in relation to the intended task. In this review, a useful introductory summary of the most commonly used 3D printing systems and mechanisms is provided before the description of the most recent trends of the use of 3D printing for analytical and bioanalytical chemistry. Concluding remarks will be also given together with a brief discussion of possible future directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137:014001–014005

    Article  Google Scholar 

  2. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B 143:172–196

    Article  CAS  Google Scholar 

  3. Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55:155–162

    Article  Google Scholar 

  4. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21:22–37

    Article  Google Scholar 

  5. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86:3240–3253

    Article  CAS  PubMed  Google Scholar 

  6. Gross BC, Lockwood SY, Spence DM (2017) Recent advances in analytical chemistry by 3D printing. Anal Chem 89:57–70

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Ge S, Yu J (2016) Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing. TrAC Trends Anal Chem 85:166–180

    Article  CAS  Google Scholar 

  8. Cocovi-Solberg DJ, Worsfold PJ, Miró M (2018) Opportunities for 3D printed millifluidic platforms incorporating on-line sample handling and separation. TrAC Trends Anal Chem 108:13–22

    Article  CAS  Google Scholar 

  9. Ambrosi A, Shi RRS, Webster RD (2020) 3D-printing for electrolytic processes and electrochemical flow systems. J Mater Chem A 8:21902–21929

    Article  CAS  Google Scholar 

  10. Erokhin KS, Gordeev EG, Ananikov VP (2019) Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3D printing applications. Sci Rep 9:20177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gross BC, Anderson KB, Meisel JE, McNitt MI, Spence DM (2015) Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis. Anal Chem 87:6335–6341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16:1993–2013

    Article  CAS  PubMed  Google Scholar 

  14. Salentijn GIJ, Oomen PE, Grajewski M, Verpoorte E (2017) Fused deposition modeling 3D printing for (bio)analytical device fabrication: procedures, materials, and applications. Anal Chem 89:7053–7061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Macdonald NP, Cabot JM, Smejkal P, Guijt RM, Paull B, Breadmore MC (2017) Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal Chem 89:3858–3866

    Article  CAS  PubMed  Google Scholar 

  16. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243

    Article  Google Scholar 

  17. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45:2740–2755

    Article  CAS  PubMed  Google Scholar 

  18. Bagheri A, Jin J (2019) Photopolymerization in 3D printing. ACS App Polymer Mat 1:593–611

    Article  CAS  Google Scholar 

  19. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53 

    Article  CAS  Google Scholar 

  20. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204

    Article  CAS  Google Scholar 

  21. Rocha VG, Saiz E, Tirichenko IS, García-Tuñón E (2020) Direct ink writing advances in multi-material structures for a sustainable future. J Mater Chem A 8:15646–15657 

    Article  CAS  Google Scholar 

  22. Wang Y, Xu Z, Wu D, Bai J (2020) Current status and prospects of polymer powder 3D printing technologies. Materials 13:2406

    Article  CAS  PubMed Central  Google Scholar 

  23. Chin SY, Dikshit V, Meera Priyadarshini B, Zhang Y (2020) Powder-based 3D printing for the fabrication of device with micro and mesoscale features. Micromachines 11:658

    Article  PubMed Central  Google Scholar 

  24. Au AK, Huynh W, Horowitz LF, Folch A (2016) 3D-printed microfluidics. Angew Chem Int Ed 55:3862–3881

    Article  CAS  Google Scholar 

  25. Chan HN, Tan MJA, Wu H (2017) Point-of-care testing: applications of 3D printing. Lab Chip 17:2713–2739

    Article  CAS  PubMed  Google Scholar 

  26. Pearce JM (2014) Chapter 1 - introduction to open-source hardware for science. In: Pearce JM (ed) Open-Source Lab. Elsevier, Boston, pp 1–11

    Google Scholar 

  27. Dhankani KC, Pearce JM (2017) Open source laboratory sample rotator mixer and shaker. HardwareX 1:1–12

    Article  Google Scholar 

  28. Gupta V, Beirne S, Nesterenko PN, Paull B (2018) Investigating the effect of column geometry on separation efficiency using 3D printed liquid chromatographic columns containing polymer monolithic phases. Anal Chem 90:1186–1194

    Article  CAS  PubMed  Google Scholar 

  29. Moleirinho MG, Feast S, Moreira AS, Silva RJS, Alves PM, Carrondo MJT, Huber T, Fee C, Peixoto C (2021) 3D-printed ordered bed structures for chromatographic purification of enveloped and non-enveloped viral particles. Sep Purif Technol 254:117681

    Article  CAS  Google Scholar 

  30. Salmean C, Dimartino S (2019) 3D-printed stationary phases with ordered morphology: state of the art and future development in liquid chromatography. Chromatographia 82:443–463

    Article  CAS  Google Scholar 

  31. Singh H, Shimojima M, Shiratori T, Van An L, Sugamata M, Yang M (2015) Application of 3D printing technology in increasing the diagnostic performance of enzyme-linked immunosorbent assay (ELISA) for infectious diseases. Sensors 15:16503–16515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lambert A, Valiulis S, Cheng Q (2018) Advances in optical sensing and bioanalysis enabled by 3D printing. ACS Sens 3:2475–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu C, Liao S-C, Song J, Mauk MG, Li X, Wu G, Ge D, Greenberg RM, Yang S, Bau HH (2016) A high-efficiency superhydrophobic plasma separator. Lab Chip 16:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park C, Lee J, Kim Y, Kim J, Lee J, Park S (2017) 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J Microbiol Methods 132:128–133

    Article  CAS  PubMed  Google Scholar 

  35. Calderilla C, Maya F, Cerdà V, Leal LO (2017) 3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique. Talanta 175:463–469

    Article  CAS  PubMed  Google Scholar 

  36. Jue E, Schoepp NG, Witters D, Ismagilov RF (2016) Evaluating 3D printing to solve the sample-to-device interface for LRS and POC diagnostics: example of an interlock meter-mix device for metering and lysing clinical urine samples. Lab Chip 16:1852–1860

    Article  CAS  PubMed  Google Scholar 

  37. Chan K, Coen M, Hardick J, Gaydos CA, Wong K-Y, Smith C, Wilson SA, Vayugundla SP, Wong S (2016) Low-cost 3D printers enable high-quality and automated sample preparation and molecular detection. PLoS One 11:e0158502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Quesada-González D, Merkoçi A (2017) Mobile phone-based biosensing: an emerging “diagnostic and communication” technology. Biosens Bioelectron 92:549–562

    Article  PubMed  CAS  Google Scholar 

  39. Sun Q, Wang J, Tang M, Huang L, Zhang Z, Liu C, Lu X, Hunter KW, Chen G (2017) A new electrochemical system based on a flow-field shaped solid electrode and 3D-printed thin-layer flow cell: detection of Pb2+ ions by continuous flow accumulation square-wave anodic stripping voltammetry. Anal Chem 89:5024–5029

    Article  CAS  PubMed  Google Scholar 

  40. Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL, McNamara S, Martin RS, Spence DM (2014) 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14:2023–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bishop GW, Satterwhite JE, Bhakta S, Kadimisetty K, Gillette KM, Chen E, Rusling JF (2015) 3D-printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated Prussian blue nanoparticle-modified electrodes. Anal Chem 87:5437–5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem 86:3124–3130

    Article  CAS  PubMed  Google Scholar 

  43. Tang CK, Vaze A, Rusling JF (2017) Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins. Lab Chip 17:484–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kadimisetty K, Mosa IM, Malla S, Satterwhite-Warden JE, Kuhns TM, Faria RC, Lee NH, Rusling JF (2016) 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron 77:188–193

    Article  CAS  PubMed  Google Scholar 

  45. Santangelo MF, Libertino S, Turner APF, Filippini D, Mak WC (2018) Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection. Biosens Bioelectron 99:464–470

    Article  CAS  PubMed  Google Scholar 

  46. Sharafeldin M, Kadimisetty K, Bhalerao KS, Chen T, Rusling JF (2020) 3D-printed immunosensor arrays for cancer diagnostics. Sensors 20:4514

    Article  CAS  PubMed Central  Google Scholar 

  47. Peltomaa R, Amaro-Torres F, Carrasco S, Orellana G, Benito-Peña E, Moreno-Bondi MC (2018) Homogeneous quenching immunoassay for fumonisin B1 based on gold nanoparticles and an epitope-mimicking yellow fluorescent protein. ACS Nano 12:11333–11342

    Article  CAS  PubMed  Google Scholar 

  48. Ang WL, Bonanni A (2019) Unravelling the aptamer-analyte interaction dynamics through fluorescence quenching in graphene quantum dots (GQDs) based homogeneous assays. ChemPlusChem 84:420–426

    Article  CAS  PubMed  Google Scholar 

  49. Rateni G, Dario P, Cavallo F (2017) Smartphone-based food diagnostic technologies: a review. Sensors 17:1453

    Article  PubMed Central  Google Scholar 

  50. Hossain A, Canning J, Ast S, Rutledge PJ, Yen TL, Jamalipour A (2015) Lab-in-a-phone: smartphone-based portable Fluorometer for pH measurements of environmental water. IEEE Sensors J 15:5095–5102

    Article  CAS  Google Scholar 

  51. Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A (2013) A personalized food allergen testing platform on a cellphone. Lab Chip 13:636–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fang J, Qiu X, Wan Z, Zou Q, Su K, Hu N, Wang P (2016) A sensing smartphone and its portable accessory for on-site rapid biochemical detection of marine toxins. Anal Methods 8:6895–6902

    Article  CAS  Google Scholar 

  53. Long KD, Woodburn EV, Le HM, Shah UK, Lumetta SS, Cunningham BT (2017) Multimode smartphone biosensing: the transmission, reflection, and intensity spectral (TRI)-analyzer. Lab Chip 17:3246–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Zeinhom MMA, Yang M, Sun R, Wang S, Smith JN, Timchalk C, Li L, Lin Y, du D (2017) A 3D-printed, portable, optical-sensing platform for smartphones capable of detecting the herbicide 2,4-Dichlorophenoxyacetic acid. Anal Chem 89:9339–9346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun AC, Yao C, Venkatesh AG, Hall DA (2016) An efficient power harvesting mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sensors Actuators B Chem 235:126–135

    Article  CAS  Google Scholar 

  56. Momeni F, Hassani.N SMM, Liu X, Ni J (2017) A review of 4D printing. Mater Design 122:42–79

    Article  CAS  Google Scholar 

  57. Shin D-G, Kim T-H, Kim D-E (2017) Review of 4D printing materials and their properties. Int J Precis Eng Manuf-Green Tech 4:349–357

    Article  Google Scholar 

  58. Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H (2019) 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater 92:19–36

    Article  CAS  PubMed  Google Scholar 

  59. Khosravani MR, Reinicke T (2020) 3D-printed sensors: current progress and future challenges. Sens Actuat A 305:111916

    Article  CAS  Google Scholar 

  60. Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Gaisford S, Basit AW (2019) Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv 16:1081–1094

    Article  CAS  PubMed  Google Scholar 

  61. Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V (2019) 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol 7:164

  62. Scida K, Stege PW, Haby G, Messina GA, García CD (2011) Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta 691:6–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bonanni A, Pumera M (2013) High-resolution impedance spectroscopy for graphene characterization. Electrochem Commun 26:52–54

    Article  CAS  Google Scholar 

  64. Cardoso RM, Kalinke C, Rocha RG, dos Santos PL, Rocha DP, Oliveira PR, Janegitz BC, Bonacin JA, Richter EM, Munoz RAA (2020) Additive-manufactured (3D-printed) electrochemical sensors: a critical review. Anal Chim Acta 1118:73–91

    Article  CAS  PubMed  Google Scholar 

  65. Muñoz J, Pumera M (2020) 3D-printed biosensors for electrochemical and optical applications. TrAC Trends Anal Chem 128:115933

    Article  CAS  Google Scholar 

  66. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687

    Article  CAS  PubMed  Google Scholar 

  67. Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180

    Article  CAS  PubMed  Google Scholar 

  68. Li K, Wei H, Liu W, Meng H, Zhang P, Yan C (2018) 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology 29:185501

    Article  PubMed  CAS  Google Scholar 

  69. Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M et al (2016) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16:303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Manzanares Palenzuela CL, Novotný F, Krupička P, Sofer Z, Pumera M (2018) 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Anal Chem 90:5753–5757

    Article  CAS  PubMed  Google Scholar 

  71. Rymansaib Z, Iravani P, Emslie E, Medvidović-Kosanović M, Sak-Bosnar M, Verdejo R, Marken F (2016) All-polystyrene 3D-printed electrochemical device with embedded carbon nanofiber-graphite-polystyrene composite conductor. Electroanalysis 28:1517–1523

    Article  CAS  Google Scholar 

  72. Manzanares-Palenzuela CL, Hermanova S, Sofer Z, Pumera M (2019) Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. Nanoscale 11:12124–12131

    Article  CAS  PubMed  Google Scholar 

  73. Richter EM, Rocha DP, Cardoso RM, Keefe EM, Foster CW, Munoz RAA, Banks CE (2019) Complete additively manufactured (3D-printed) electrochemical sensing platform. Anal Chem 91:12844–12851

    Article  CAS  PubMed  Google Scholar 

  74. Ambrosi A, Moo JGS, Pumera M (2016) Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv Funct Mater 26:698–703

    Article  CAS  Google Scholar 

  75. Lee KY, Ambrosi A, Pumera M (2017) 3D-printed metal electrodes for heavy metals detection by anodic stripping voltammetry. Electroanalysis 29:2444–2453

    Article  CAS  Google Scholar 

  76. Loo AH, Chua CK, Pumera M (2017) DNA biosensing with 3D printing technology. Analyst 142:279–283

    Article  CAS  PubMed  Google Scholar 

  77. Tan G, Nasir MZM, Ambrosi A, Pumera M (2017) 3D printed electrodes for detection of nitroaromatic explosives and nerve agents. Anal Chem 89:8995–9001

    Article  CAS  PubMed  Google Scholar 

  78. Liyarita BR, Ambrosi A, Pumera M (2018) 3D-printed electrodes for sensing of biologically active molecules. Electroanalysis 30:1319–1326

    Article  CAS  Google Scholar 

  79. Ambrosi A, Pumera M (2018) Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts. ACS Sustain Chem Eng 6:16968–16975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.A. and A.B. acknowledge the support of the Double-Hundred Program for Foreign Experts of Shandong Province (WST2019011). A.B. gratefully acknowledges Ministry of Education (MOE), AcRF Tier 1 grant (Reference No: RG9/19) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Ambrosi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on 3D printing Manufacturing Technologies for the Advancement of Analytical Sciences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosi, A., Bonanni, A. How 3D printing can boost advances in analytical and bioanalytical chemistry. Microchim Acta 188, 265 (2021). https://doi.org/10.1007/s00604-021-04901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04901-2

Keywords

Navigation