Skip to main content
Log in

A self-correcting fluorescent assay of tyrosinase based on Fe-MIL-88B-NH2 nanozyme

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A self-correcting fluorescent assay of tyrosinase (TYR) was developed by utilization of Fe-MIL-88B-NH2 as a peroxidase-like nanozyme and a capture probe. Fe-MIL-88B-NH2 nanozyme was selected as an electron donor, and the oxidization product (dopamine-o-quinone) acts as an energy acceptor. First, TYR catalyzes the oxidation of tyramine hydrochloride to dopamine and then to dopamine-o-quinone. Second, Fe-MIL-88B-NH2 with intrinsic peroxidase-like activity decomposes H2O2 to produce ·OH radicals, which further accelerate the oxidation of dopamine to dopamine-o-quinone. Excessive H2O2 and ·OH radicals reduce the interferences from ascorbic acid at the same time providing a self-correcting ability. Dopamine-o-quinone reacts with -NH2 groups on the ligand of Fe-MIL-88B-NH2 through Michael reaction which results in fluorescence quenching. Under 365-nm excitation, the fluorescence emission intensity at 452 nm gradually decreased with increasing TYR concentration varying from 0 to 10 U mL−1. The linear range is from 1 to 5 U mL−1 and the detection limit is 0.05679 U mL−1. This self-correcting fluorescent assay of tyrosinase exhibits good sensitivity and selectivity which is also successfully applied for tyrosinase inhibitor detection.

Graphical abstract

Schematic representation of fluorescent assay for tyrosinase determination based on Fe-MIL-88B-NH2 nanozyme.

A self-correcting fluorescent assay for tyrosinase was developed based on the Fe-MIL-88B-NH2 nanozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu X, Hu J, Zhao Z, Sun M, Chi X, Wang X, Gao J (2015) Kinetic and sensitive analysis of tyrosinase activity using electron transfer complexes: in vitro and intracellular study. Small 11(7):862–870. https://doi.org/10.1002/smll.201401595

    Article  CAS  PubMed  Google Scholar 

  2. Solem E, Tuczek F, Decker H (2016) Tyrosinase versus catechol oxidase: one asparagine makes the difference. Angew Chem Int Ed 55(8):2884–2888. https://doi.org/10.1002/anie.201508534

    Article  CAS  Google Scholar 

  3. Li S, Hu R, Wang S, Guo X, Zeng Y, Li Y, Yang G (2018) Specific imaging of tyrosinase in vivo with 3-hydroxybenzyl caged D-luciferins. Anal Chem 90(15):9296–9300. https://doi.org/10.1021/acs.analchem.8b01874

    Article  CAS  PubMed  Google Scholar 

  4. Chiang L, Keown W, Citek C, Wasinger EC, Stack TD (2016) Simplest monodentate imidazole stabilization of the oxy-tyrosinase Cu2O2 core: phenolate hydroxylation through a cu(III) intermediate. Angew Chem Int Ed 55(35):10453–10457. https://doi.org/10.1002/anie.201605159

    Article  CAS  Google Scholar 

  5. Zhao J, Bao X, Wang S, Lu S, Sun J, Yang X (2017) In situ fluorogenic and chromogenic reactions for the sensitive dual-readout assay of tyrosinase activity. Anal Chem 89(19):10529–10536. https://doi.org/10.1021/acs.analchem.7b02739

    Article  CAS  PubMed  Google Scholar 

  6. Zhou J, Shi W, Li L, Gong Q, Wu X, Li X, Ma H (2016) Detection of misdistribution of tyrosinase from melanosomes to lysosomes and its upregulation under psoralen/ultraviolet a with a melanosome-targeting tyrosinase fluorescent probe. Anal Chem 88(8):4557–4564. https://doi.org/10.1021/acs.analchem.6b00742

    Article  CAS  PubMed  Google Scholar 

  7. Yan X, Li H, Zheng W, Su X (2015) Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Anal Chem 87(17):8904–8909. https://doi.org/10.1021/acs.analchem.5b02037

    Article  CAS  PubMed  Google Scholar 

  8. Chai L, Zhou J, Feng H, Tang C, Huang Y, Qian Z (2015) Functionalized carbon quantum dots with dopamine for tyrosinase activity monitoring and inhibitor screening: in vitro and intracellular investigation. ACS Appl Mater Interfaces 7(42):23564–23574. https://doi.org/10.1021/acsami.5b06711

    Article  CAS  PubMed  Google Scholar 

  9. Qu Z, Yu T, Bi L (2019) A dual-channel ratiometric fluorescent probe for determination of the activity of tyrosinase using nitrogen-doped graphene quantum dots and dopamine-modified CdTe quantum dots. Mikrochim Acta 186(9):635–643. https://doi.org/10.1007/s00604-019-3733-x

    Article  CAS  PubMed  Google Scholar 

  10. Teng Y, Jia X, Li J, Wang E (2015) Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal Chem 87(9):4897–4902. https://doi.org/10.1021/acs.analchem.5b00468

    Article  CAS  PubMed  Google Scholar 

  11. Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S, Babapoor A, Chiang WH (2020) Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Anal Chim Acta 1107:183–192. https://doi.org/10.1016/j.aca.2020.02.018

    Article  CAS  PubMed  Google Scholar 

  12. Silveira-Dorta G, Monzon DM, Crisostomo FP, Martin T, Martin VS, Carrillo R (2015) Oxidation with air by ascorbate-driven quinone redox cycling. Chem Commun 51(32):7027–7030. https://doi.org/10.1039/c5cc01519g

    Article  CAS  Google Scholar 

  13. Ma W, Long YT (2014) Quinone/hydroquinone-functionalized biointerfaces for biological applications from the macro- to nano-scale. Chem Soc Rev 43(1):30–41. https://doi.org/10.1039/c3cs60174a

    Article  CAS  PubMed  Google Scholar 

  14. Zhao J, Liu G, Sun J, Wang Q, Li ZJ, Yang X (2020) Dual-readout tyrosinase activity assay facilitated by a chromo-fluorogenic reaction between catechols and naphthoresorcin. Anal Chem 92(2):2316–2322. https://doi.org/10.1021/acs.analchem.9b05204

    Article  CAS  PubMed  Google Scholar 

  15. Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y (2020) Metal-organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun 56(77):11338–11353. https://doi.org/10.1039/d0cc04890a

    Article  CAS  Google Scholar 

  16. Jiang H, Jia J, Shkurenko A, Chen Z, Adil K, Belmabkhout Y, Weselinski LJ, Assen AH, Xue DX, O'Keeffe M, Eddaoudi M (2018) Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal-organic framework platforms. J Am Chem Soc 140(28):8858–8867. https://doi.org/10.1021/jacs.8b04745

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y-Z, Zhang R, Jiao L, Jiang H-L (2018) Metal–organic framework-derived porous materials for catalysis. Coord Chem Rev 362:1–23. https://doi.org/10.1016/j.ccr.2018.02.008

    Article  CAS  Google Scholar 

  18. Mendes RF, Figueira F, Leite JP, Gales L, Almeida Paz FA (2020) Metal-organic frameworks: a future toolbox for biomedicine? Chem Soc Rev 49(24):9121–9153. https://doi.org/10.1039/d0cs00883d

    Article  CAS  PubMed  Google Scholar 

  19. Kang Y-S, Lu Y, Chen K, Zhao Y, Wang P, Sun W-Y (2019) Metal–organic frameworks with catalytic centers: from synthesis to catalytic application. Coord Chem Rev 378:262–280. https://doi.org/10.1016/j.ccr.2018.02.009

    Article  CAS  Google Scholar 

  20. Li H, Li L, Lin R-B, Zhou W, Zhang Z, Xiang S, Chen B (2019) Porous metal-organic frameworks for gas storage and separation: status and challenges. Energy Chem 1(1):100006. https://doi.org/10.1016/j.enchem.2019.100006

    Article  Google Scholar 

  21. Ren R, Cai G, Yu Z, Zeng Y, Tang D (2018) Metal-polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Anal Chem 90(18):11099–11105. https://doi.org/10.1021/acs.analchem.8b03538

    Article  CAS  PubMed  Google Scholar 

  22. Lv S, Zhang K, Zhu L, Tang D, Niessner R, Knopp D (2019) H2-based electrochemical biosensor with Pd nanowires@ZIF-67 molecular sieve bilayered sensing Interface for immunoassay. Anal Chem 91(18):12055–12062. https://doi.org/10.1021/acs.analchem.9b03177

    Article  CAS  PubMed  Google Scholar 

  23. Lv S, Zhang K, Zhu L, Tang D (2020) ZIF-8-assisted NaYF4:Yb,Tm@ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor. Anal Chem 92(1):1470–1476. https://doi.org/10.1021/acs.analchem.9b04710

    Article  CAS  PubMed  Google Scholar 

  24. Cai W, Gao H, Chu C, Wang X, Wang J, Zhang P, Lin G, Li W, Liu G, Chen X (2017) Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces 9(3):2040–2051. https://doi.org/10.1021/acsami.6b11579

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  26. Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52(8):2190–2200. https://doi.org/10.1021/acs.accounts.9b00140

    Article  CAS  PubMed  Google Scholar 

  27. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076. https://doi.org/10.1039/c8cs00457a

    Article  CAS  PubMed  Google Scholar 

  28. Yu Z, Cai G, Liu X, Tang D (2020) Platinum nanozyme-triggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor. ACS Appl Mater Interfaces 12(36):40133–40140. https://doi.org/10.1021/acsami.0c12074

    Article  CAS  PubMed  Google Scholar 

  29. Zeng R, Luo Z, Zhang L, Tang D (2018) Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal Chem 90(20):12299–12306. https://doi.org/10.1021/acs.analchem.8b03889

    Article  CAS  PubMed  Google Scholar 

  30. Hou L, Qin Y, Li J, Qin S, Huang Y, Lin T, Guo L, Ye F, Zhao S (2019) A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone. Biosens Bioelectron 143:111605. https://doi.org/10.1016/j.bios.2019.111605

    Article  CAS  PubMed  Google Scholar 

  31. Han LJ, Kong YJ, Hou GZ, Chen HC, Zhang XM, Zheng HG (2020) A europium-based MOF fluorescent probe for efficiently detecting malachite green and uric acid. Inorg Chem 59(10):7181–7187. https://doi.org/10.1021/acs.inorgchem.0c00620

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Guo A, Chang L, Li W-J, Ruan W-J (2017) Luminescent metal-organic-framework-based label-free assay of polyphenol oxidase with fluorescent scan. Chem Eur J 23(27):6562–6569. https://doi.org/10.1002/chem.201605992

    Article  CAS  PubMed  Google Scholar 

  33. Hou L, Qin Y, Lin T, Sun Y, Ye F, Zhao S (2020) Michael reaction-assisted fluorescent sensor for selective and one step determination of catechol via bifunctional Fe-MIL-88NH2 nanozyme. Sensors Actuators B Chem 321:128547–128553. https://doi.org/10.1016/j.snb.2020.128547

    Article  CAS  Google Scholar 

  34. Bauer S, Serre C, Devic T, Horcajada P, Marrot J, Ferey G, Stock N (2008) High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. Inorg Chem 47(17):7568–7576. https://doi.org/10.1021/ic800538r

    Article  CAS  PubMed  Google Scholar 

  35. Ma M, Bétard A, Weber I, Al-Hokbany NS, Fischer RA, Metzler-Nolte N (2013) Iron-based metal–organic frameworks MIL-88B and NH2-MIL-88B: high quality microwave synthesis and solvent-induced lattice “breathing”. Cryst Growth Des 13(6):2286–2291. https://doi.org/10.1021/cg301738p

    Article  CAS  Google Scholar 

  36. Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J (2015) An amine-functionalized Iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv Sci 2(3):1500006. https://doi.org/10.1002/advs.201500006

    Article  CAS  Google Scholar 

  37. Yi X, He X, Yin F, Yang T, Chen B, Li G (2020) NH2–MIL-88B–Fe for electrocatalytic N2 fixation to NH3 with high faradaic efficiency under ambient conditions in neutral electrolyte. J Mater Sci 55(26):12041–12052. https://doi.org/10.1007/s10853-020-04777-2

    Article  CAS  Google Scholar 

  38. Wang D, Chen C, Ke X, Kang N, Shen Y, Liu Y, Zhou X, Wang H, Chen C, Ren L (2015) Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system. ACS Appl Mater Interfaces 7(5):3030–3040. https://doi.org/10.1021/am5086269

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for the financial support from the National Natural Science Foundation of China (21765002), the Natural Science Foundation of Guangxi (AD19110004, 2017GXNSFDA198044), and the BAGUI Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianran Lin or Fanggui Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 5854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Lin, T., Zeng, C. et al. A self-correcting fluorescent assay of tyrosinase based on Fe-MIL-88B-NH2 nanozyme. Microchim Acta 188, 158 (2021). https://doi.org/10.1007/s00604-021-04808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04808-y

Keywords

Navigation