Skip to main content
Log in

Titanium dioxide–mediated resistive nanobiosensor for E. coli O157:H7

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A titanium dioxide nanoparticle (TiO2 NP)–mediated resistive biosensor is described for the determination of DNA fragments of Escherichia coli O157:H7 (E. coli O157:H7). The sol-gel method was used to synthesize the TiO2 NP, and microlithography was applied to fabricate the interdigitated sensor electrodes. Conventional E. coli DNA detections are facing difficulties in long-preparation-and-detection-time (more than 3 days). Hence, electronic biosensor was introduced by measuring the current-voltage (I–V) DNA probe without amplification of DNA fragments. The detection scheme is based on the interaction between the electron flow on the sensor and the introduction of negative charges from DNA probe and target DNA. The biosensor has a sensitivity of 1.67 × 1013 Ω/M and a wide analytical range. The limit detection is down to 1 × 10−11 M of DNA. The sensor possesses outstanding repeatability and reproducibility and is cabable to detect DNA within 15 min in a minute-volume sample (1 μL).

Fig. (a) Graphical illustration of electronic biosensor set up and (b) relationship between limit of detection (LOD) and the unaffected poultry samples on E. coli O157:H7

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nomura K, Gopinath SCB, Lakshmipriya T et al (2013) An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing. Nat Commun:4

  2. Nadzirah S, Azizah N, Hashim U et al (2015) Titanium dioxide nanoparticle-based Interdigitated electrodes: a novel current to voltage DNA biosensor recognizes E. coli O157:H7. PLoS One 10:e0139766. https://doi.org/10.1371/journal.pone.0139766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gopinath SCB, Lakshmipriya T, Awazu K (2014) Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron 51:115–123. https://doi.org/10.1016/j.bios.2013.07.037

    Article  CAS  PubMed  Google Scholar 

  4. Gopinath SCB, Lakshmipriya T, Chen Y et al (2016) Aptamer-based ‘point-of-care testing’. Biotechnol Adv 34:198–208. https://doi.org/10.1016/j.biotechadv.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  5. Kalaiyarasi J, Meenakshi S, Pandian K, Gopinath SCB (2017) Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode. Microchim Acta 184:2131–2140. https://doi.org/10.1007/s00604-017-2161-z

    Article  CAS  Google Scholar 

  6. Ibraheam AS, Al-Douri Y, Voon CH et al (2017) Surface functionalized Cu2Zn1−x Cd x SnS4 quinternary alloyed nanostructure for DNA sensing. Appl Phys A Mater Sci Process 123:200–209. https://doi.org/10.1007/s00339-017-0838-0

    Article  CAS  Google Scholar 

  7. Odeh AA, Al-Douri Y, Voon CH et al (2017) A needle-like Cu2CdSnS4 alloy nanostructure-based integrated electrochemical biosensor for detecting the DNA of dengue serotype 2. Microchim Acta 184:2211–2218. https://doi.org/10.1007/s00604-017-2249-5

    Article  CAS  Google Scholar 

  8. Karim SSA, Dee CF, Majlis BY, Mohamed MA (2019) Recent progress on fabrication of zinc oxide nanorod-based field effect transistor biosensors. Sains Malaysiana 48:1301–1310. https://doi.org/10.17576/jsm-2019-4806-19

    Article  Google Scholar 

  9. Hamzah AA, Selvarajan RS, Majlis BY (2017) Graphene for biomedical applications: a review. Sains Malaysiana 46:1125–1139. https://doi.org/10.17576/jsm-2017-4607-16

    Article  CAS  Google Scholar 

  10. Pandey A, Gurbuz Y, Ozguz V et al (2017) Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosens Bioelectron 91:225–231. https://doi.org/10.1016/j.bios.2016.12.041

    Article  CAS  PubMed  Google Scholar 

  11. Rahman SFA, Yusof NA, Hashim U et al (2016) Enhanced sensing of dengue virus DNA detection using O2 plasma treated-silicon nanowire based electrical biosensor. Anal Chim Acta 942:74–85. https://doi.org/10.1016/j.aca.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  12. Bruck HA, Yang M, Kostov Y, Rasooly A (2013) Electrical percolation based biosensors. Methods 63:282–289. https://doi.org/10.1016/j.ymeth.2013.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu M, Wang R, Li Y (2017) Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 162:511–522. https://doi.org/10.1016/j.talanta.2016.10.050

    Article  CAS  PubMed  Google Scholar 

  14. Khalid WEFW, Heng LY, Arip MNM (2018) Surface modification of cellulose nanomaterial for urea biosensor application. Sains Malaysiana 47:941–949. https://doi.org/10.17576/jsm-2018-4705-09

    Article  CAS  Google Scholar 

  15. Rahman M, Heng LY, Futra D, Chiang CP, Rashid ZA, Ling TL (2017) A highly sensitive electrochemical DNA biosensor from acrylic-gold nano-composite for the determination of Arowana fish gender. Nanoscale Res Lett 12:1–10. https://doi.org/10.1186/s11671-017-2254-y

    Article  CAS  Google Scholar 

  16. Nuzaihan MNM, Hashim U, Md Arshad MK et al (2016) Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. Biosens Bioelectron 83:106–114. https://doi.org/10.1016/j.bios.2016.04.033

    Article  CAS  Google Scholar 

  17. Ten ST, Hashim U, Gopinath SCB et al (2017) Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures. Biosens Bioelectron 93:146–154. https://doi.org/10.1016/j.bios.2016.09.035

    Article  CAS  PubMed  Google Scholar 

  18. Adzhri R, Md Arshad MK, Gopinath SCB et al (2017) Enhanced sensitivity mediated ambipolar conduction with p-type TiO2 anatase transducer for biomarker capturing. Sensors Actuators A Phys 259:57–67. https://doi.org/10.1016/J.SNA.2017.03.015

    Article  CAS  Google Scholar 

  19. Rajapaksha A, Hashim U, Uda M et al (2017) Target ssDNA detection of E. coli O157:H7 through electrical based DNA biosensor. Microsyst Technol 23:5771–5780. https://doi.org/10.1007/s00542-017-3498-2

    Article  CAS  Google Scholar 

  20. Fathil MFM, Md Arshad MK, Ruslinda AR et al (2017) Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detection. Sensors Actuators B Chem 242:1142–1154. https://doi.org/10.1016/J.SNB.2016.09.131

    Article  CAS  Google Scholar 

  21. Azizah N, Hashim U, Gopinath SCB, Nadzirah S (2016) Gold nanoparticle mediated method for spatially resolved deposition of DNA on nano-gapped interdigitated electrodes, and its application to the detection of the human papillomavirus. Microchim Acta 183:3119–3126. https://doi.org/10.1007/s00604-016-1954-9

    Article  CAS  Google Scholar 

  22. Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K, Horiguchi Y, Nagasaki Y (2013) A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst 138:2863–2870. https://doi.org/10.1039/C3AN00298E

    Article  CAS  PubMed  Google Scholar 

  23. Gopinath SCB, Hayashi K, Lee J-B et al (2013) Analysis of compounds that interfere with herpes simplex virus–host receptor interactions using surface plasmon resonance. Anal Chem 85:10455–10462. https://doi.org/10.1021/ac4025522

    Article  CAS  PubMed  Google Scholar 

  24. Gopinath SCB, Hayashi K, Kumar PKR (2012) Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J Virol 86:6732–6744. https://doi.org/10.1128/JVI.00377-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perumal V, Hashim U, Gopinath SCB, Haarindraprasad R, Poopalan P, Liu WW, Ravichandran M, Balakrishnan SR, Ruslinda AR (2016) A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods. Biosens Bioelectron 78:14–22. https://doi.org/10.1016/j.bios.2015.10.083

    Article  CAS  PubMed  Google Scholar 

  26. Sihar N, Dee CF, Mohamed MA, et al. (2016) Electrical characterization of reduced graphene oxide deposited on interdigitated electrodes. In: IEEE international conference on semiconductor electronics, Proceedings, ICSE. pp 332–335

  27. Nadzirah S, Hashim U (2017) Interdigitated microelectrode geometry for simple electrical Escherichia coli O157:H7 DNA detection. Microelectron Int 34. https://doi.org/10.1108/MI-08-2016-0054

  28. Nadzirah S, Foo KL, Hashim U (2015) Morphological reaction on the different stabilizers of titanium dioxide nanoparticles. Int J Electrochem Sci 10

  29. Nadzirah S, Hashim U, Kashif M, Shamsuddin SA (2016) Stable electrical, morphological and optical properties of titanium dioxide nanoparticles affected by annealing temperature. Microsyst Technol 34:1–8. https://doi.org/10.1007/s00542-016-2913-4

    Article  CAS  Google Scholar 

  30. Khalid NS, Mohd Fazli FI, Hamed NKA et al (2016) Biocompatibility of TiO2 nanorods and nanoparticles on HeLa cells. Sains Malaysiana 45:1675–1678

    CAS  Google Scholar 

  31. Rahim S, Sasani Ghamsari M, Radiman S (2012) Surface modification of titanium oxide nanocrystals with PEG. Sci Iran 19:948–953. https://doi.org/10.1016/J.SCIENT.2012.03.009

    Article  CAS  Google Scholar 

  32. Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131–10176. https://doi.org/10.1021/cr400625j

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Yao ZJ, Haidry AA et al (2018) Resistive-type hydrogen gas sensor based on TiO2: a review. Int J Hydrog Energy 43:21114–21132. https://doi.org/10.1016/j.ijhydene.2018.09.051

    Article  CAS  Google Scholar 

  34. Li Z, Haidry AA, Gao B et al (2017) The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl Surf Sci 412:638–647. https://doi.org/10.1016/J.APSUSC.2017.03.156

    Article  CAS  Google Scholar 

  35. Kwon H, Lee Y, Hwang S, Kim JK (2017) Highly-sensitive H2 sensor operating at room temperature using Pt/TiO2 nanoscale Schottky contacts. Sensors Actuators B Chem 241:985–992. https://doi.org/10.1016/J.SNB.2016.11.022

    Article  CAS  Google Scholar 

  36. Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. NPG Asia Mater 3:17–24

    Article  Google Scholar 

  37. Sykes JE, Sykes JE, Weese JS (2014) Infection control programs for dogs and cats. Canine Feline Infect Dis:105–118. https://doi.org/10.1016/B978-1-4377-0795-3.00011-9

  38. Rutala WA, Weber DJ (2015) Disinfection, sterilization, and control of hospital waste. Mand Douglas, Bennett’s Princ Pract Infect Dis 3294-3309.e4. https://doi.org/10.1016/B978-1-4557-4801-3.00301-5

  39. Nadzirah S, Azizah N, Hashim U, et al (2015) Titanium dioxide nanoparticle-based interdigitated electrodes: a novel current to voltage DNA biosensor recognizes E. coli O157:H7. PLoS one 10. https://doi.org/10.1371/journal.pone.0139766

  40. Petralia S, Cosentino T, Sinatra F et al (2017) Silicon nitride surfaces as active substrate for electrical DNA biosensors. Sensors Actuators B Chem 252:492–502. https://doi.org/10.1016/j.snb.2017.06.023

    Article  CAS  Google Scholar 

  41. Ozkan-Ariksoysal D, Kayran YU, Yilmaz FF, Ciucu AA, David IG, David V, Hosgor-Limoncu M, Ozsoz M (2017) DNA-wrapped multi-walled carbon nanotube modified electrochemical biosensor for the detection of Escherichia coli from real samples. Talanta 166:27–35. https://doi.org/10.1016/j.talanta.2017.01.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by HICOE (phase II) fund–“MEMS for Biomedical Devices (Artificial Kidney)” from Ministry of Education, Modal Insan Fund (MI-2019-005) and Dana Impak Perdana (DIP-2018-006) from Universiti Kebangsaan Malaysia (UKM) and Geran COEMTUN under Grant Nos. 9016-00004, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP); One-Point Healthlab Sdn. Bhd. and LRGS grant (600-RMI/LRGS 5/3 (3/2013)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sh. Nadzirah or Chang Fu Dee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadzirah, S., Hashim, U., Gopinath, S.C.B. et al. Titanium dioxide–mediated resistive nanobiosensor for E. coli O157:H7. Microchim Acta 187, 235 (2020). https://doi.org/10.1007/s00604-020-4214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4214-y

Keywords

Navigation