Skip to main content
Log in

A mesoporous nanosorbent composed of silica, graphene, and palladium (II) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new ultrasonic-assisted dispersive solid-phase extraction method using mesoporous nanosorbent composed of silica, graphene, and palladium (II) (M S/G@-SH@Pd (II)), coupled with corona discharge ion mobility spectrometry, was developed for trace determination of organophosphorus pesticides. Initially, the M S/G@-SH@Pd (II) nanosorbent was synthesized and characterized. Then, the nanosorbent was used for the sorption and extraction of organophosphorus pesticides. Under the optimized conditions (pH = 7.0, 15 mg of sorbent, 3 min extraction time, ethanol as desorption agent, 3 min centrifuge time), the proposed technique provided good linearity (R2 > 0.994), repeatability (RSD < 4.6%), low limits of detection (0.15–0.30 ng mL−1), excellent preconcentration factor (PF = 472–478), and high recoveries (93–94%). The method was applied to the determination of organophosphorus pesticides in real water samples. The sorbent was reused in 5 cycles without any considerable loss of activity.

Schematic presentation of design and synthesis of mesoporous nanosorbent composed of silica, graphene, and palladium (II) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vasilić Ž, Štengl B, Drevenkar V (1999) Dimethylphosphorus metabolites in serum and urine of persons poisoned by malathion or thiometon. Chem Biol Interact 119–120:479–487. https://doi.org/10.1016/S0009-2797(99)00061-7

    Article  PubMed  Google Scholar 

  2. Sanghi R, Tewari V (2001) Monitoring of pesticide residues in summer fruits and vegetables from Kanpur, India. Bull Environ Contam Toxicol 67:587–593. https://doi.org/10.1007/s001280164

    Article  CAS  PubMed  Google Scholar 

  3. Wagner ED, McMillan SM, Plewa MJ (2005) Cytotoxicity of organophosphorus ester (OP) insecticides and cytotoxic synergism of 2-acetoxyacetylaminofluorene (2AAAF) in Chinese hamster ovary (CHO) cells. Bull Environ Contam Toxicol 75:329–334. https://doi.org/10.1007/s00128-005-0757-1

    Article  CAS  PubMed  Google Scholar 

  4. Kang HG, Jeong SH, Cho JH, Kim DG, Park JM, Cho MH (2004) Chlropyrifos-methyl shows anti-androgenic activity without estrogenic activity in rats. Toxicology 199:219–230. https://doi.org/10.1016/J.TOX.2004.02.025

    Article  CAS  PubMed  Google Scholar 

  5. Toxic effects of pesticides | Casarett and Doull’s toxicology: the basic science of poisons, 8e | AccessPharmacy | McGraw-Hill Medical. https://accesspharmacy.mhmedical.com/content.aspx?sectionid=53483747&bookid=958. Accessed 2 Feb 2019

  6. Sharma D, Nagpal A, Pakade YB, Katnoria JK (2010) Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: a review. Talanta 82:1077–1089. https://doi.org/10.1016/J.TALANTA.2010.06.043

    Article  CAS  PubMed  Google Scholar 

  7. Zhao E, Zhao W, Han L, Jiang S, Zhou Z (2007) Application of dispersive liquid–liquid microextraction for the analysis of organophosphorus pesticides in watermelon and cucumber. J Chromatogr A 1175:137–140. https://doi.org/10.1016/J.CHROMA.2007.10.069

    Article  CAS  PubMed  Google Scholar 

  8. Tankiewicz M, Fenik J, Biziuk M (2010) Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC Trends Anal Chem 29:1050–1063. https://doi.org/10.1016/J.TRAC.2010.05.008

    Article  CAS  Google Scholar 

  9. Fritz JS (1999) Analytical Solid-Phase Extraction. Wiley-VCH, New York

  10. Baghban N, Yilmaz E, Soylak M (2018) Vortex assisted solid-phase extraction of lead (II) using orthorhombic nanosized Bi2WO6 as a sorbent. Microchim Acta 185:34–39. https://doi.org/10.1007/s00604-017-2548-x

    Article  CAS  Google Scholar 

  11. Aladaghlo Z, Fakhari A, Behbahani M (2016) Solvent-assisted dispersive solid-phase extraction: a sample preparation method for trace detection of diazinon in urine and environmental water samples. J Chromatogr A 1462:27–34. https://doi.org/10.1016/J.CHROMA.2016.07.084

    Article  CAS  PubMed  Google Scholar 

  12. Aladaghlo Z, Fakhari A, Behbahani M (2016) Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples. J Sep Sci 39:3798–3805. https://doi.org/10.1002/jssc.201600735

    Article  CAS  PubMed  Google Scholar 

  13. Aladaghlo Z, Fakhari AR (2019) Development of a new solvent-assisted dispersive solid-phase extraction followed by ion mobility spectrometry for trace determination of organophosphorus pesticides in environmental water samples. Sep Sci PLUS sscp.201900031. https://doi.org/10.1002/sscp.201900031

  14. Behbahani M, Bagheri S, Omidi F, Amini MM (2018) An amino-functionalized mesoporous silica (KIT-6) as a sorbent for dispersive and ultrasonication-assisted micro solid phase extraction of hippuric acid and methylhippuric acid, two biomarkers for toluene and xylene exposure. Microchim Acta 185:505. https://doi.org/10.1007/s00604-018-3038-5

    Article  CAS  Google Scholar 

  15. Aladaghlo Z, Fakhari AR, Alavioon SI, Dabiri M (2019) Ultrasound assisted dispersive solid phase extraction of triazole fungicides by using an N-heterocyclic carbene copper complex supported on ionic liquid-modified graphene oxide as a sorbent. Microchim Acta 2:2–9

    Google Scholar 

  16. Mason TJ, Lorimer JP (2002) Applied Sonochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  17. Amiri A, Ghaemi F, Maleki B (2019) Hybrid nanocomposites prepared from a metal-organic framework of type MOF-199(Cu) and graphene or fullerene as sorbents for dispersive solid phase extraction of polycyclic aromatic hydrocarbons. Microchim Acta 186:131–138. https://doi.org/10.1007/s00604-019-3246-7

    Article  CAS  Google Scholar 

  18. Ozdemir S, Serkan Yalcin M, Kilinc E, Soylak M (2018) Boletus edulis loaded with γ-Fe2O3 nanoparticles as a magnetic sorbent for preconcentration of Co (II) and Sn (II) prior to their determination by ICP-OES. Microchim Acta 185:73–76. https://doi.org/10.1007/s00604-017-2605-5

    Article  CAS  Google Scholar 

  19. Mohammadi V, Saraji M, Jafari MT (2019) Direct molecular imprinting technique to synthesize coated electrospun nanofibers for selective solid-phase microextraction of chlorpyrifos. Microchim Acta 186:524. https://doi.org/10.1007/s00604-019-3641-0

    Article  CAS  Google Scholar 

  20. Nouri N, Khorram P, Sereshti H (2019) Applications of three-dimensional graphenes for preconcentration, extraction, and sorption of chemical species: a review. Microchim Acta 186:232

    Article  Google Scholar 

  21. Janzen DE, Bruening MA, Sutton CA, Sharma AR (2015) Trithiacrown palladium (II) complexes with cyclometallating ligands: isomer effects, intramolecular palladium-sulfur interactions, and reversible PdII/III and PdIII/IV oxidations. J Organomet Chem 777:31–41. https://doi.org/10.1016/j.jorganchem.2014.11.023

    Article  CAS  Google Scholar 

  22. Evans DA, Campos KR, Gagne MR et al (2010) ChemInform abstract: Application of chiral mixed phosphorus/sulfur ligands to palladium-catalyzed allylic substitutions. ChemInform. https://doi.org/10.1002/chin.200049031

  23. Baker SJ (2007) Phosphorus-sulphur donor complexes of palladium, nickel and iridium: preparation, coordination and structural characterisation Thesis submitted in accordance with the requirements of the University of Cardiff for the degree of Doctor in Philosophy by S

  24. Sanchez JM, Hidalgo M, Valiente M, Salvadóe V (2000) New macroporous polymers for the selective adsorption of gold (III) and palladium (II). I. The synthesis, characterization, and effect of spacers on metal adsorption. J Polym Sci Part A Polym Chem 38:269–278. https://doi.org/10.1002/(SICI)1099-0518(20000115)38:2<269::AID-POLA1>3.0.CO;2-E

    Article  CAS  Google Scholar 

  25. Sorribes-Soriano A, de la Guardia M, Esteve-Turrillas FA, Armenta S (2018) Trace analysis by ion mobility spectrometry: from conventional to smart sample preconcentration methods. A review. Anal Chim Acta 1026:37–50. https://doi.org/10.1016/J.ACA.2018.03.059

    Article  CAS  PubMed  Google Scholar 

  26. Aladaghlo Z, Fakhari AR, Hasheminasab KS (2016) Application of electromembrane extraction followed by corona discharge ion mobility spectrometry analysis as a fast and sensitive technique for determination of tricyclic antidepressants in urine samples. Microchem J 129:41–48. https://doi.org/10.1016/J.MICROC.2016.05.013

    Article  CAS  Google Scholar 

  27. Movahed SK, Shariatipour M, Dabiri M (2015) Gold nanoparticles decorated on a graphene-periodic mesoporous silica sandwich nanocomposite as a highly efficient and recyclable heterogeneous catalyst for catalytic applications. RSC Adv 5:33423–33431. https://doi.org/10.1039/C5RA00062A

    Article  CAS  Google Scholar 

  28. Wang P, Luo M, Liu D et al (2018) Application of a magnetic graphene nanocomposite for organophosphorus pesticide extraction in environmental water samples. J Chromatogr A 1535:9–16. https://doi.org/10.1016/J.CHROMA.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  29. Xie J, Liu T, Song G et al (2013) Simultaneous analysis of organophosphorus pesticides in water by magnetic solid-phase extraction coupled with GC–MS. Chromatographia 76:535–540. https://doi.org/10.1007/s10337-013-2408-8

    Article  CAS  Google Scholar 

  30. Zohrabi P, Shamsipur M, Hashemi M, Hashemi B (2016) Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 160:340–346. https://doi.org/10.1016/J.TALANTA.2016.07.036

    Article  CAS  PubMed  Google Scholar 

  31. Seebunrueng K, Santaladchaiyakit Y, Soisungnoen P, Srijaranai S (2011) Catanionic surfactant ambient cloud point extraction and high-performance liquid chromatography for simultaneous analysis of organophosphorus pesticide residues in water and fruit juice samples. Anal Bioanal Chem 401:1703–1712. https://doi.org/10.1007/s00216-011-5214-x

    Article  CAS  PubMed  Google Scholar 

  32. Farajzadeh MA, Afshar Mogaddam MR, Rezaee Aghdam S, Nouri N, Bamorrowat M (2016) Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection. Food Chem 212:198–204. https://doi.org/10.1016/J.FOODCHEM.2016.05.157

    Article  CAS  PubMed  Google Scholar 

  33. Deme P, Azmeera T, Kanjilal S, Jonnalagadda P, Upadhyayula VS (2013) LC-MS/MS determination of organophosphorus pesticide residues in coconut water. Food Anal Methods 6:1162–1169. https://doi.org/10.1007/s12161-012-9523-2

    Article  Google Scholar 

  34. Kermani M, Jafari MT, Saraji M (2019) Porous magnetized carbon sheet nanocomposites for dispersive solid-phase microextraction of organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry. Microchim Acta 186:88. https://doi.org/10.1007/s00604-018-3215-6

    Article  CAS  Google Scholar 

  35. Targhoo A, Amiri A, Baghayeri M (2018) Magnetic nanoparticles coated with poly(p-phenylenediamine-co-thiophene) as a sorbent for preconcentration of organophosphorus pesticides. Microchim Acta 185:15–18. https://doi.org/10.1007/s00604-017-2560-1

    Article  CAS  Google Scholar 

  36. Sun P, Gao YL, Xu C, Lian YF (2018) Determination of six organophosphorus pesticides in water samples by three-dimensional graphene aerogel-based solid-phase extraction combined with gas chromatography/mass spectrometry. RSC Adv 8:10277–10283. https://doi.org/10.1039/c7ra13316b

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the research affairs of Shahid Beheshti University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Fakhari.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aladaghlo, Z., Fakhari, A.R., Alavioon, S.I. et al. A mesoporous nanosorbent composed of silica, graphene, and palladium (II) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry. Microchim Acta 187, 209 (2020). https://doi.org/10.1007/s00604-020-4174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4174-2

Keywords

Navigation