Skip to main content
Log in

An electrochemical and fluorescence dual-signal assay based on Fe3O4@MnO2 and N-doped carbon dots for determination of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical and fluorescence dual-signal assay was developed for the determination of hydrogen peroxide (H2O2) based on Fe3O4@MnO2 and N-doped carbon dots (NCDs). Fe3O4@MnO2 was not only applied as the recognizer for H2O2 but also served as the fluorescence quencher and electrochemical enhancer. This permits the dual-signal readout of the analytical system. In the absence of H2O2, the NCDs were quenched by Fe3O4@MnO2, and the oxidation of the electrochemical probe ferrocene (Fc) was catalyzed by Fe3O4@MnO2. In the presence of H2O2, MnO2 was reduced to Mn2+, leading to the fluorescence recovery of NCDs and the reduction in the oxidation signal of Fc. By combining the electrochemical method and the fluorescence assay, more comprehensive and valuable information for H2O2 determination was provided to meet different analytical demands. The method exhibits good repeatability and selectivity with a detection limit of 1.0 μM for the fluorescence assay and 0.6 μM for the electrochemical method. The proposed approach holds great potential for probing released targets from living cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang R, Zhao J, Han G, Liu Z, Liu C, Zhang C, Liu B, Jiang C, Liu R, Zhao T, Han M, Zhang Z (2016) Real-time discrimination and versatile profiling of spontaneous reactive oxygen species in living organisms with a single fluorescent probe. J Am Chem Soc 138(11):3769–3778. https://doi.org/10.1021/jacs.5b12848

    Article  PubMed  CAS  Google Scholar 

  2. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999. https://doi.org/10.1038/nature08119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Liang L, Lan F, Li L, Su M, Ge S, Yu J, Liu H, Yan M (2016) Fluorescence “turn-on” determination of H2O2 using multilayer porous SiO2/NGQDs and PdAu mimetics enzymatic/oxidative cleavage of single-stranded DNA. Biosens Bioelectron 82:204–211. https://doi.org/10.1016/j.bios.2016.03.076

    Article  PubMed  CAS  Google Scholar 

  4. Zhang C, Wang P, Yin X, Liu H, Yang Y, Cheng L, Song G, Zhang X (2019) Two-photon supramolecular nanoplatform for ratiometric bioimaging. Anal Chem 91(9):6371–6377. https://doi.org/10.1021/acs.analchem.9b01455

    Article  PubMed  CAS  Google Scholar 

  5. Liu F, Yang L, Yin X, Liu X, Ge L, Li F (2019) A facile homogeneous electrochemical biosensing strategy based on displacement reaction for intracellular and extracellular hydrogen peroxide detection. Biosens Bioelectron 141:111446–111453. https://doi.org/10.1016/j.bios.2019.111446

    Article  PubMed  CAS  Google Scholar 

  6. Khan F, Akhtar N, Jalal N, Hussain I, Szmigielski R, Hayat MQ, Ahmad HB, El-Said WA, Yang M, Janjua HA (2019) Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells. Microchim Acta 186(2):127–136. https://doi.org/10.1007/s00604-019-3227-x

    Article  CAS  Google Scholar 

  7. Liu H, Zhu L, Ma H, Wen J, Xu H, Qiu Y, Zhang L, Li L, Gu C (2019) Copper(II)-coated Fe3O4 nanoparticles as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide. Microchim Acta 186(186):518–527. https://doi.org/10.1007/s00604-019-3599-y

    Article  CAS  Google Scholar 

  8. Hassanzadeh J, Al Lawati HAJ, Al Lawati I (2019) Metal–organic framework loaded by rhodamine B as a novel chemiluminescence system for the paper-based analytical devices and its application for total phenolic content determination in food samples. Anal Chem 91(16):10631–10639. https://doi.org/10.1021/acs.analchem.9b01862

    Article  PubMed  CAS  Google Scholar 

  9. Wang X, Qin L, Lin M, Xing H, Wei H (2019) Fluorescent graphitic carbon nitride-based nanozymes with peroxidase-like activities for ratiometric biosensing. Anal Chem 91(16):10648–10656. https://doi.org/10.1021/acs.analchem.9b01884

    Article  PubMed  CAS  Google Scholar 

  10. Deng W, Peng Y, Yang H, Tan Y, Ma M, Xie Q, Chen S (2019) Ruthenium ion-complexed carbon nitride nanosheets with peroxidase-like activity as a ratiometric fluorescence probe for the detection of hydrogen peroxide and glucose. ACS Appl Mater Interfaces 11(32):29072–29077. https://doi.org/10.1021/acsami.9b10715

    Article  PubMed  CAS  Google Scholar 

  11. Cheng T, Li X, Huang P, Wang H, Wang M, Yang W (2019) Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic. Microchim Acta 186(2):94–102. https://doi.org/10.1007/s00604-018-3209-4

    Article  CAS  Google Scholar 

  12. Liu T, Li N, Dong JX, Zhang Y, Fan YZ, Lin SM, Luo HQ, Li NB (2017) A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens Bioelectron 87:772–778. https://doi.org/10.1016/j.bios.2016.08.098

    Article  PubMed  CAS  Google Scholar 

  13. Liu SG, Mo S, Han L, Li N, Fan YZ, Li NB, Luo HQ (2019) Oxidation etching induced dual-signal response of carbon dots/silver nanoparticles system for ratiometric optical sensing of H2O2 and H2O2-related bioanalysis. Anal Chim Acta 1055:81–89. https://doi.org/10.1016/j.aca.2018.12.015

    Article  PubMed  CAS  Google Scholar 

  14. Sekli Belaïdi F, Farouil L, Salvagnac L, Temple-Boyer P, Séguy I, Heully JL, Alary F, Bedel-Pereira E, Launay J (2019) Towards integrated multi-sensor platform using dual electrochemical and optical detection for on-site pollutant detection in water. Biosens Bioelectron 132:90–96. https://doi.org/10.1016/j.bios.2019.01.065

    Article  PubMed  CAS  Google Scholar 

  15. Mars A, Hamami M, Bechnak L, Patra D, Raouafi N (2018) Curcumin-graphene quantum dots for dual mode sensing platform: electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal Chim Acta 1036:141–146. https://doi.org/10.1016/j.aca.2018.06.075

    Article  PubMed  CAS  Google Scholar 

  16. Cao Y, Dai Y, Chen H, Tang Y, Chen X, Wang Y, Zhao J, Zhu X (2019) Integration of fluorescence imaging and electrochemical biosensing for both qualitative location and quantitative detection of cancer cells. Biosens Bioelectron 130:132–138. https://doi.org/10.1016/j.bios.2019.01.024

    Article  PubMed  CAS  Google Scholar 

  17. Devi P, Saini S, Kim K (2019) The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron 141:111158–111175. https://doi.org/10.1016/j.bios.2019.02.059

    Article  PubMed  CAS  Google Scholar 

  18. Peng Z, Miyanji EH, Zhou Y, Pardo J, Hettiarachchi SD, Li S, Blackwelder PL, Skromne I, Leblanc RM (2017) Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale 9(44):17533–17543. https://doi.org/10.1039/C7NR05731H

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Luo J, Shen X, Li B, Li X, Zhou X (2018) Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. Microchim Acta 185(8):392–400. https://doi.org/10.1007/s00604-018-2931-2

    Article  CAS  Google Scholar 

  20. Pathak PK, Kumar A, Prasad BB (2019) Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens Bioelectron 127:10–18. https://doi.org/10.1016/j.bios.2018.11.055

    Article  PubMed  CAS  Google Scholar 

  21. Fu L, Wang A, Lai G, Lin C, Yu J, Yu A, Liu Z, Xie K, Su W (2018) A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Microchim Acta 185(2):87. https://doi.org/10.1007/s00604-017-2646-9

    Article  CAS  Google Scholar 

  22. Chen Y, Lian Y, Huang M, Wei L, Xiao L (2019) A dual-mode fluorometric/colorimetric sensor for Cu2+ detection based on hybridized carbon dots and gold-silver core-shell nanoparticles. Analyst 144(14):4250–4257. https://doi.org/10.1039/c9an00850k

    Article  PubMed  CAS  Google Scholar 

  23. Li C, Zheng Y, Ding H, Jiang H, Wang X (2019) Chromium(III)-doped carbon dots: fluorometric detection of p-nitrophenol via inner filter effect quenching. Microchim Acta 186(6):384–392. https://doi.org/10.1007/s00604-019-3444-3

    Article  CAS  Google Scholar 

  24. Liu G, Feng D, Qian Y, Wang W, Zhu J (2019) Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods. Talanta 201:90–95. https://doi.org/10.1016/j.talanta.2019.03.101

    Article  PubMed  CAS  Google Scholar 

  25. Xi J, Xie C, Zhang Y, Wang L, Xiao J, Duan X, Ren J, Xiao F, Wang S (2016) Pd nanoparticles decorated N-doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Appl Mater Interfaces 8(34):22563–22573. https://doi.org/10.1021/acsami.6b05561

    Article  PubMed  CAS  Google Scholar 

  26. Gowthaman NSK, Sinduja B, Karthikeyan R, Rubini K, Abraham John S (2017) Fabrication of nitrogen-doped carbon dots for screening the purine metabolic disorder in human fluids. Biosens Bioelectron 94:30–38. https://doi.org/10.1016/j.bios.2017.02.034

    Article  PubMed  CAS  Google Scholar 

  27. Peng C, Xing H, Fan X, Xue Y, Li J, Wang E (2019) Glutathione regulated inner filter effect of MnO2 nanosheets on boron nitride quantum dots for sensitive assay. Anal Chem 91(9):5762–5767. https://doi.org/10.1021/acs.analchem.8b05961

    Article  PubMed  CAS  Google Scholar 

  28. Gan Y, Hu N, He C, Zhou S, Tu J, Liang T, Pan Y, Kirsanov D, Legin A, Wan H, Wang P (2019) MnO2 nanosheets as the biomimetic oxidase for rapid and sensitive oxalate detection combining with bionic E-eye. Biosens Bioelectron 130:254–261. https://doi.org/10.1016/j.bios.2019.01.026

    Article  PubMed  CAS  Google Scholar 

  29. Yuan J, Cen Y, Kong X, Wu S, Liu C, Yu R, Chu X (2015) MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces 7(19):10548–10555. https://doi.org/10.1021/acsami.5b02188

    Article  PubMed  CAS  Google Scholar 

  30. Zhu W, Jiang G, Xu L, Li B, Cai Q, Jiang H, Zhou X (2015) Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione. Anal Chim Acta 886:37–47. https://doi.org/10.1016/j.aca.2015.05.036

    Article  PubMed  CAS  Google Scholar 

  31. Zhu W, Xu L, Zhu C, Li B, Xiao H, Jiang H, Zhou X (2016) Magnetically controlled electrochemical sensing membrane based on multifunctional molecularly imprinted polymers for detection of insulin. Electrochim Acta 218:91–100. https://doi.org/10.1016/j.electacta.2016.09.108

    Article  CAS  Google Scholar 

  32. Tan J, Zou R, Zhang J, Li W, Zhang L, Yue D (2016) Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale 8(8):4742–4747. https://doi.org/10.1039/c5nr08516k

    Article  PubMed  CAS  Google Scholar 

  33. Zhu W, Shen X, Zhu C, Li B, Hong J, Zhou X (2018) Turn-on fluorescent assay based on purification system via magnetic separation for highly sensitive probing of adenosine. Sensors Actuators B Chem 259:855–861. https://doi.org/10.1016/j.snb.2017.12.147

    Article  CAS  Google Scholar 

  34. Wang Y, Zhu X, Ding F, Liu Y, Yang L, Zou P, Zhao Q, Wang X, Rao H (2019) Colorimetric detection of gallic acid based on the enhanced oxidase-like activity of floral-like magnetic Fe3O4@MnO2. Luminescence 34(1):55–63. https://doi.org/10.1002/bio.3576

    Article  PubMed  CAS  Google Scholar 

  35. Li Z, Tang X, Liu K, Huang J, Xu Y, Peng Q, Ao M (2018) Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation. Beilstein J Nanotechnol 9:1940–1950. https://doi.org/10.3762/bjnano.9.185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  37. Wang K, Xiao T, Yue Q, Wu F, Yu P, Mao L (2017) Selective amperometric recording of endogenous ascorbate secretion from a single rat adrenal chromaffin cell with pretreated carbon fiber microelectrodes. Anal Chem 89(17):9502–9507. https://doi.org/10.1021/acs.analchem.7b02508

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Wu C, Zhou X, Wu X, Yang Y, Wu H, Guo S, Zhang J (2013) Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5(5):1816–1819. https://doi.org/10.1039/c3nr33954h

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (nos. 21904069, 81471301, and 81773681) and the Natural Science Foundation of Jiangsu Province (no. BK20190653). This work was also supported by the Natural Science Foundation for Higher School of Jiangsu Province (no. 19KJB350002) and the Foundation for Science and Technology Development of Nanjing Medical University (no. NMUB2018023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Liu or Xuemin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Zhou, Y., Tao, M. et al. An electrochemical and fluorescence dual-signal assay based on Fe3O4@MnO2 and N-doped carbon dots for determination of hydrogen peroxide. Microchim Acta 187, 187 (2020). https://doi.org/10.1007/s00604-020-4163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4163-5

Keywords

Navigation