Skip to main content
Log in

Polystyrene@poly(ar-vinylbenzyl)trimethylammonium-co-acrylic acid core/shell pH-responsive nanoparticles for active targeting and imaging of cancer cell based on aggregation induced emission

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Doubly charged pH-responsive core/shell hydrogel nanoparticles with green fluorescence were prepared and were shown to be viable bioprobes for active targeting tumor tissue and imaging of cancer cells. Via emulsionfree copolymerization hydrogel nanoparticles as VANPs were prepared, the core of which was polystyrene (Ps) and the shell was comprised of strongly positive electrolyte (ar-vinylbenzyl)trimethylammonium (VBTAC) with weak negative electrolyte acrylic acid (AA). Through conventional amidation, the shell was conjugated with cell-specific folic acid (FA), denoted as VANPs-FA. Then, negatively charged sulfonated 9,10-distyrylanthracene derivatives (SDSA) based on aggregation induced emission (AIE), was binding tightly to positively charged VBTAC of VANPs-FA shell. The prepared double charged fluorescent core/shell hydrogel nanoparticles abbreviated as VANPs-FS, showed excitation/emission wavelengths at ~420/528 nm. Dynamic light scattering (DLS) measurements were performed to determine the size and surficial zeta potential of VANPs-FS. Under proper ratio of VBTAC to AA, the VANPs-FS was stable (~ 64.63 nm, −20.2 mV) at high pH (> 7), started to aggregate (~ 683.0 nm, −3.2 mV) at pH around 6, and can redispers at low pH (< 5). The MTT analysis proved that VANPs-FS had good biocompatibility and low cytotoxicity. The targeting effectiveness of VANPs-FS was confirmed by confocal laser scanning microscopy (CLSM).

Detailed synthetic route of VANPs-FS (top) and schematic cancer tumor-target aggregation of pH-sensitive VANPs-FS with enhanced retention and rapid cancer cell imaging (bottom).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Voorneveld J, Saaid H, Schinkel C, Radeljic N, Lippe B, Gijsen FJH, Steen AFW, Jong N, Claessens T, Vos HJ, Kenjeres S, Bosch JG (2020) 4-D echo-particle image velocimetry in a left ventricular phantom. Ultrasound Med Biol 19:31621–31627

    Google Scholar 

  2. Kumar V, Kukkar D, Hashemi B, Kim KH, Deep A (2019) Advanced functional structure-based sensing and imaging strategies for cancer detection: possibilities, opportunities, challenges, and prospects. Adv Funct Mater 29:1807859

    Article  CAS  Google Scholar 

  3. Huang M, Shen AJ, Ding J, Geng MY (2014) Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol Sci 35:41–50

    Article  PubMed  CAS  Google Scholar 

  4. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  PubMed  CAS  Google Scholar 

  5. Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  PubMed  CAS  Google Scholar 

  6. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:1–12

    Google Scholar 

  7. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  PubMed  CAS  Google Scholar 

  8. Pirsaheb M, Mohammadi S, Salimi A, Payandeh M (2019) Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim Acta 186:231

    Article  CAS  Google Scholar 

  9. Pathak A, Suneesh PV, Stanley J, Babu TS (2019) Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Microchim Acta 186:157

    Article  CAS  Google Scholar 

  10. Huang Q, Liu Y, Zheng LL, Wu LP, Zhou ZY, Chen JF, Chen W, Zhao HW (2019) Biocompatible iron(II)-doped carbon dots as T 1-weighted magnetic resonance contrast agents and fluorescence imaging probes. Microchim Acta 186:492

    Article  CAS  Google Scholar 

  11. Wang Q, Yang HT, Zhang Q, Ge HG, Zhang SR, Wang ZY, Ji XH (2019) Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of pH variation in living cells. Microchim Acta 186:468

    Article  CAS  Google Scholar 

  12. Kamiya M, Urano Y (2016) Rapid and sensitive fluorescent imaging of tiny tumors in vivo and in clinical specimens. Curr Opin Chem Biol 33:9–15

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y, Wang XY, Mi JQ, Jiang YN, Wang CX (2019) Metal nanoclusters-based ratiometric fluorescent probes from design to sensing applications. Part Part Syst Charact 36:1900298

    Article  CAS  Google Scholar 

  14. Jiang YN, Yang XD, Ma C, Wang CX, Chen Y, Dong FX, Yang B, Yu K, Lin Q (2014) Interfacing a tetraphenylethene derivative and a smart hydrogel for temperature-dependent photoluminescence with sensitive thermoresponse. ACS Appl Mater Interfaces 6:4650–4657

    Article  PubMed  CAS  Google Scholar 

  15. Jiang YN, Yang XD, Ma C, Wang CX, Li H, Dong FX, Zhai XM, Yu K, Lin Q, Yang B (2010) Photoluminescent smart hydrogels with reversible and linear thermoresponses. Small 6:2673–2677

    Article  PubMed  CAS  Google Scholar 

  16. Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133:2

    Article  PubMed  CAS  Google Scholar 

  17. Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129

    Article  PubMed  CAS  Google Scholar 

  18. Xia FF, Niu JQ, Hong YP, Li CL, Cao W, Wang LR, Hou WX, Liu YL, Cui DX (2019) Matrix metallopeptidase 2 targeted delivery of gold nanostars decorated with IR-780 iodide for dual-modal imaging and enhanced photothermal/photodynamic therapy. Acta Biomater 89:289–299

    Article  PubMed  CAS  Google Scholar 

  19. Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3:502–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang PF, Zhao Z, Li CS, Su HF, Wu YY, Kwok RTK, Lam JWY, Gong P, Cai LT, Tang BZ (2018) Aptamer-decorated self-assembled aggregation-induced emission organic dots for cancer cell targeting and imaging. Anal Chem 90:1063–1067

    Article  PubMed  CAS  Google Scholar 

  21. Bae Y, Nishiyama N, Kataoka K (2007) In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 18:1131–1139

    Article  PubMed  CAS  Google Scholar 

  22. Box C, Rogers SJ, Mendiola M, Eccles SA (2010) Tumour-microenvironmental interactions: paths to progression and targets for treatment. Semin Cancer Biol 20:128–138

    Article  PubMed  CAS  Google Scholar 

  23. Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6

    Article  PubMed  CAS  Google Scholar 

  24. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Diomed Eng 14:1–16

    Article  CAS  Google Scholar 

  26. Duan XP, Li YP (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:1521–1532

    Article  PubMed  CAS  Google Scholar 

  27. Liu XS, Chen YJ, Li H, Huang N, Jin Q, Ren KF, Ji J (2013) Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 7:6244–6257

    Article  PubMed  CAS  Google Scholar 

  28. Li HJ, Du JZ, Du XJ, Xu CF, Sun CY, Wang HX, Cao ZT, Yang XZ, Zhu YH, Nie SM, Wang J (2016) Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. P Natl A Sci 113:4164–4169

    Article  CAS  Google Scholar 

  29. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  PubMed  CAS  Google Scholar 

  30. Ji XT, Lv HY, Sun XX, Ding CF (2019) Green-emitting carbon dot loaded silica nanoparticles coated with DNA-cross-linked hydrogels for sensitive carcinoembryonic antigen detection and effective targeted cancer therapy. Chem Commun 55:15101–15104

    Article  CAS  Google Scholar 

  31. Yuan YY, Ding D, Li K, Liu J, Liu B (2014) Tumor-responsive fluorescent light-up probe based on a gold nanoparticle/conjugated polyelectrolyte hybrid. Small 10:1967–1975

    Article  PubMed  CAS  Google Scholar 

  32. Fan ZT, Zhou SX, Garcia C, Fan LZ, Zhou JB (2017) pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale 9:4928–4933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ding N, Li Z, Tian XW, Zhang JH, Guo KL, Wang P (2019) Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo. Chem Commun 55:13172–13175

    Article  CAS  Google Scholar 

  34. Liu JS, Bao HJ, Ma DL, Leung CH (2019) Silver nanoclusters functionalized with Ce (III) ions are a viable “turn-on-off” fluorescent probe for sulfide. Microchim Acta 186:16

    Article  CAS  Google Scholar 

  35. Xiong HY, Wang B, Wen W, Zhang XH, Wang SF (2019) Fluorometric determination of copper (II) by using 3-aminophenylboronic acid-functionalized CdTe quantum dot probes. Microchim Acta 186:392

    Article  CAS  Google Scholar 

  36. Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–207

    Article  PubMed  CAS  Google Scholar 

  37. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes JC (2006) Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27:2060–2065

    Article  PubMed  CAS  Google Scholar 

  38. Ghimire A, Kasi RM, Kumar CV (2014) Proton-coupled protein binding: controlling lysozyme/poly (acrylic acid) interactions with pH. J Phys Chem B 118:5026–5033

    Article  PubMed  CAS  Google Scholar 

  39. Lu HG, Su FY, Mei Q, Zhou XF, Tian YP, Tian WJ, Johnson RH, Meldrum DR (2012) A series of poly [N-(2-hydroxypropyl) methacrylamide] copolymers with anthracene-derived fluorophores showing aggregation-induced emission properties for bioimaging. J Polym Sci A Polym Chem 50:890–899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang ZL, Ma K, Xu B, Li X, Tian WJ (2013) A highly sensitive “turn-on” fluorescent probe for bovine serum albumin protein detection and quantification based on AIE-active distyrylanthracene derivative. Sci China Chem 56:1234–1238

    Article  CAS  Google Scholar 

  41. Hong YN, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388

    Article  PubMed  CAS  Google Scholar 

  42. Gu JP, Li XQ, Zhou Z, Liao RS, Gao JW, Tang YP, Wang QM (2019) Synergistic regulation of effective detection for hypochlorite based on a dual-mode probe by employing aggregation induced emission (AIE) and intramolecular charge transfer (ICT) effects. Chem Eng J 368:157–164

    Article  CAS  Google Scholar 

  43. Li HJ, Du JZ, Liu J, Du XJ, Shen S, Zhu YH, Wang XY, Ye XD, Nie SM, Wang J (2016) Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10:6753–6761

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank for the support from Prof. Tian Wenjing’s team. This work was supported by Jilin province science and technology development plan (Grant No. 20180201060SF) and ministry of science and technology (Grant No. 2018YFC1706603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingnan Jiang or Quan Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yu Zhao and Bo Pang should be regarded as co-first author

Electronic supplementary material

ESM 1

(DOCX 2689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Pang, B., Chen, J. et al. Polystyrene@poly(ar-vinylbenzyl)trimethylammonium-co-acrylic acid core/shell pH-responsive nanoparticles for active targeting and imaging of cancer cell based on aggregation induced emission. Microchim Acta 187, 166 (2020). https://doi.org/10.1007/s00604-020-4133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4133-y

Keywords

Navigation