Skip to main content
Log in

Fluoroimmunoassay of influenza virus using sulfur-doped graphitic carbon nitride quantum dots coupled with Ag2S nanocrystals

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Novel sulfur-doped graphitic carbon nitride quantum dots (S-gCNQDs) are synthesized using a single-source precursor in a one-step solvothermal process. The S-gCNQDs with a size of ~ 5-nm displayed a strong green intrinsic fluorescence at 512 nm when excited at 400 nm, with a quantum yield of ~ 33% in aqueous solution. The prepared S-gCNQDs and Ag2S nanocrystals were applied as innovative functional materials to fabricate a biosensor for virus detection based on the conjugation of specific anti-human influenza A monoclonal antibody to the S-gCNQDs and Ag2S NCs, respectively. In the presence of the influenza A virus, an interaction between the S-gCNQDs/Ag2S-labeled antibody resulted in the formation of a nanosandwich structure, which is accompanied by the fluorescence enhancement of the S-gCNQDs. The change in fluorescence intensity linearly correlats with the concentration of the influenza A virus (H1N1) in the 10 fg/mL to 1.0 ng/mL range, with a limit of detection of 5.5 fg/mL. The assay was applied to the assay of clinically isolated influenza A virus (H3N2/Yokohama) mixed with human serum. The obtained limit of detection was 100 PFU/mL within the detection range of 102– 5 × 104 PFU/mL for the H3N2 virus.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Gatherer G (2009) The 2009 H1N1 influenza outbreak in its historical context. J Clin Virol 45:174–178

    Article  Google Scholar 

  2. Dziąbowska K, Czaczyk E, Nidzworski D (2018) Detection methods of human and animal influenza virus-current trends. Biosensors 8:94. https://doi.org/10.3390/bios8040094

    Article  CAS  Google Scholar 

  3. Choi YJ, Kim HJ, Park JS, Oh MH, Nam HS, Kim YB (2010) Evaluation of new rapid antigen test for detection of pandemic influenza A/H1N1 2009 virus. J Clin Microbiol 48:2260–2262. https://doi.org/10.1128/JCM.02392-09

    Article  Google Scholar 

  4. Dong Y, Wang Q, Wu H, Chen Y, Lu CH, Chi Y, Yang HH (2016) Graphitic carbon nitride materials: sensing, imaging and therapy. Small 12:5376–5393

    Article  CAS  Google Scholar 

  5. Ahmad R, Tripathy N, Khosla A, Khan M, Mishra P, Ansari WA, Syed MA, Hahn YB (2020) Recent advances in nanostructured graphitic carbon nitride as a sensing material for heavy metal ions. J Electrochem Soc 167:037519

    Article  CAS  Google Scholar 

  6. Cheng Q, He Y, Ge Y, Zhou J, Song G (2018) Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C3N4) quantum dots. Microchim Acta 185:332–340

    Article  Google Scholar 

  7. Barman S, Sadhukhan M (2012) Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem 22:21832–21837

    Article  CAS  Google Scholar 

  8. Tang Y, Su Y, Yang N, Zhang L, Lv Y (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem 86:4528–4535

    Article  CAS  Google Scholar 

  9. Achadu OJ, Revaprasadu N (2019) Tannic acid-derivatized graphitic carbon nitride quantum dots as an “on-off-on” fluorescent nanoprobe for ascorbic acid via copper(II) mediation. Microchim Acta 186:87–97. https://doi.org/10.1007/s00604-018-3203-x

    Article  CAS  Google Scholar 

  10. Achadu OJ, Revaprasadu N (2018) Microwave-assisted synthesis of thymine-functionalized graphitic carbon nitride quantum dots as fluorescent nanoprobe for mercury(II). Microchim Acta 185:461–469

    Article  Google Scholar 

  11. Xu J, Chen Y, Ma D, Shang JK, Li YX (2017) Simple preparation of MgO/g-C3N4 catalyst and its application for catalytic synthesis of dimethyl carbonate via trans-esterification. Catal Commun 95:72–76

    Article  CAS  Google Scholar 

  12. Li Y, Cai J, Liu F, Yu H, Lin F, Yang H, Lin Y, Li S (2018) Highly crystalline graphitic carbon nitride quantum dots as a fluorescent nanosensor for detection of Fe(III) via an inner filter effect. Microchim Acta 185:134–140

    Article  Google Scholar 

  13. Liu S, Tian J, Wang L, Luo Y, Sun X (2012) A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv 2:411–413

    Article  CAS  Google Scholar 

  14. Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L (2015) Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst. J Mater Chem A 3:1841–1846

    Article  CAS  Google Scholar 

  15. Mei H, Shu H, Lv H, Liu MW, Wang X (2020) Fluorescent assay based on phenyl-modified g-C3N4 nanosheets for determination of thiram. Microchim Acta 187:159–167

    Article  CAS  Google Scholar 

  16. Zhang L, Liu C, Wang Q, Wang X, Wang S (2020) Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets (C3N4) embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid. Microchim Acta 187:149–159. https://doi.org/10.1007/s00604-019-4081-6

    Article  CAS  Google Scholar 

  17. Darabdhara G, Boruah PK, Das MR (2019) Colorimetric determination of glucose in solution and via the use of a paper strip by exploiting the peroxidase and oxidase mimicking activity of bimetallic Cu-Pd nanoparticles deposited on reduced graphene oxide, graphitic carbon nitride, or MoS2 nanosheets. Microchim Acta 186:13–23. https://doi.org/10.1007/s00604-018-3112-z

    Article  CAS  Google Scholar 

  18. Ahmed SR, Takemura K, Li TC, Kitamoto N, Tanaka T, Suzuki T, Park EY (2017) Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens Bioelectron 87:558–565

    Article  CAS  Google Scholar 

  19. Li TC, Yamakawa Y, Suzuki K, Tatsumi M, Razak M, Uchida T, Takeda N, Miyamura T (1997) Expression and self-assembly of empty virus-like particles of hepatitis E virus. J Virol 71:7207–7213

    Article  CAS  Google Scholar 

  20. World Health Organization (2017) WHO information for the molecular detection of influenza viruses July [accessed 5 June 2020] http://www.who.int/influenza/gisrs_laboratory/WHO_information_for_the_molecular_detection_of_influenza_viruses_20171023_Final.pdf

  21. Jiang P, Zhu CN, Zhang ZL, Tian ZQ, Pang DW (2012) Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33:5130–5135

    Article  CAS  Google Scholar 

  22. Bankole OM, Achadu OJ, Nyokong T (2017) Nonlinear interactions of zinc phthalocyanine-graphene quantum dots nanocomposites: investigation of effects of surface functionalization with heteroatoms. J Fluoresc 27:755–766

    Article  CAS  Google Scholar 

  23. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xied Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277

    Article  CAS  Google Scholar 

  24. Holá K, Sudolská M, Kalytchuk S, Nachtigallová D, Rogach AL, Otyepka M, Zbořil R (2017) Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 12:12402–12410

    Article  Google Scholar 

  25. Gu SY, Hsieh CT, Gandomi YA, Chang JK, Li J, Li JL, Zhang HA, Guo Q, Lau KC, Pandey R (2019) Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dot. J Mater Chem C 7:5468–5476

    Article  CAS  Google Scholar 

  26. Wang J, Cao S, Ding Y, Ma F, Lu W, Sun M (2016) Theoretical investigations of optical origins of fluorescent graphene quantum dots. Sci Rep 6:24850–24855

    Article  CAS  Google Scholar 

  27. Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy Analyst, 133: 1308–1346

  28. Deng W, Xie F, Baltar HTMCM, Goldys EM (2013) Metal-enhanced fluorescence in the life sciences: here, now and beyond. Phys Chem Chem Phys 15:15695–15708

    Article  CAS  Google Scholar 

  29. Faucheaux JA, Stanton ALD, Jain PK (2014) Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities. J Phys Chem Lett 5:976–985. https://doi.org/10.1021/jz500037k

    Article  CAS  Google Scholar 

  30. Lee SH, Nishi H, Tatsuma T (2017) Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media. Chem Commun 53:12680–12683

    Article  CAS  Google Scholar 

  31. Zhang J, Pan Y, Chen Y, Lu H (2018) Plasmonic molybdenum trioxide quantum dots with noble metal-comparable surface enhanced Raman scattering. J Mater Chem C 6:2216–2220

    Article  CAS  Google Scholar 

  32. Zhou Y, Li W, Zhang Q, Yan S, Cao Y, Dong F, Wang F (2017) Non-noble metal plasmonic photocatalysis in semimetal bismuth films for photocatalytic NO oxidation. Phys Chem Chem Phys 19:25610–25616. https://doi.org/10.1039/C7CP04359G

    Article  CAS  Google Scholar 

  33. Achadu OJ, Nyokong T (2017) In situ one-pot synthesis of graphitic carbon nitride quantum dots and its 2, 2, 6, 6-tetramethyl (piperidin-1-yl) oxyl derivatives as fluorescent nanoprobes for ascorbic acid. Anal Chim Acta 991:113–126

    Article  CAS  Google Scholar 

  34. Zhou J, Yang Y, Zhang CY (2013) A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun 49:8605–8607

    Article  CAS  Google Scholar 

  35. Liu S, Wang L, Tian J, Zhai J, Luo Y, Lu W, Sun X (2011) Acid-driven microwave-assisted production of photoluminescent carbon nitride from N,N-dimethylformamide. RSC Adv 1:951–953

    Article  CAS  Google Scholar 

  36. Guo J, Lin Y, Huang H, Zhang S, Huang T, Weng W (2017) One-pot fabrication of fluorescent carbon nitride nanoparticles with high crystallinity as a highly selective and sensitive sensor for free chlorine. Sensors Actuators B Chem 244:965–971

    Article  CAS  Google Scholar 

  37. Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, Feng Y, Zeng X, Chen X (2015) Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent switch. Biosens Bioelectron 68:210–217

    Article  CAS  Google Scholar 

  38. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:14–16

    Article  Google Scholar 

  39. Chen H, Ma N, Kagawa K, Kawahito S, Digman M, Gratton E (2018) Wide-field multi-frequency fluorescence lifetime imaging using a two-tap complementary metal-oxide semiconductor camera with lateral electric field charge modulators. J Biophotonics 12:1–9

    Google Scholar 

  40. Lakowicz JR (2009) Principles of fluorescence spectroscopy, Third edn. Springer, New York, p 243

    Google Scholar 

  41. Lee J, Ahmed SR, Oh S, Kim J, Suzuki T, Parmar K, Park S, Lee J, Park EY (2015) A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens Bioelectron 64:311–317

    Article  CAS  Google Scholar 

  42. Lima KMG, Raimundo IM Jr, Pimentel MF (2007) Improving the detection limits of near infrared spectroscopy in the determination of aromatic hydrocarbons in water employing a silicone sensing phase, Sens. Actuators B Chem 125:229–233

    Article  CAS  Google Scholar 

  43. Hou X, Zhang X, Yang W, Liu Y, Zhai X (2012) Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer. Mater Res Bull 47:2579–2583

    Article  CAS  Google Scholar 

  44. Fang C, Lee YH, Shao L, Jiang R, Wang J, Xu QH (2013) Correlating the plasmonic and structural evolutions during the sulfidation of silver nanocubes. ACS Nano 7:9354–9365. https://doi.org/10.1021/nn404042p

    Article  CAS  Google Scholar 

  45. Zou F, Zhou H, Van Tan T, Kim J, Koh K, Lee J (2015) Dual-mode SERS-fluorescence immunoassay using graphene quantum dot labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS Appl Mater Interfaces 7:12168–12175. https://doi.org/10.1021/acsami.5b02523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Professor K. Morita of the Institute of Tropical Medicine, Nagasaki University, for providing the Zika virus. Dr. C. Kawakami of Yokohama City Institute of Health, Japan, is gratefully acknowledged for providing the clinically isolated influenza virus A/Yokohama/110/2009 (H3N2). We also wish to thank Dr. T.C. Li of the National Institute for Infectious Disease of Japan for providing HEV-LPs.

Funding

O.J.A and S. K. gratefully acknowledge the Japan Society for the Promotion of Science (JSPS) for a Postdoctoral Fellowship for Research in Japan (Standard) (Grant No. 19F19348) and the Grant-in-Aid for Scientific Research (S) (Grant No. 18H05240), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved and carried out according to the guidelines provided by the Ethics Committee of the Environment and Hygiene Institute in Shizuoka Prefecture (September 14, 2016).

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achadu, O.J., Lioe, D.X., Kagawa, K. et al. Fluoroimmunoassay of influenza virus using sulfur-doped graphitic carbon nitride quantum dots coupled with Ag2S nanocrystals. Microchim Acta 187, 466 (2020). https://doi.org/10.1007/s00604-020-04433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04433-1

Keywords

Navigation