Skip to main content
Log in

Fabric phase sorptive extraction followed by HPLC-PDA detection for the monitoring of pirimicarb and fenitrothion pesticide residues

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive and readily deployable analytical method has been reported for the simultaneous analysis of pirimicarb (PRM) and fenitrothion (FEN) pesticide residues in environmental water samples using fabric phase sorptive extraction (FPSE) followed by high-performance liquid chromatography combined with photodiode array (HPLC-PDA) detector. Both pesticides were successfully determined with a Luna omega C18 column under isocratic elution mode by means of acetonitrile and phosphate buffer (pH 3.0) as the mobile phase. The quantitative data for PRM and FEN were obtained at their maximum wavelengths of 310 nm and 268 nm, respectively. The calibration plots were linear in the range 10.00–750.00 ng mL−1 and 10.00–900.00 ng mL−1 with correlation coefficient of 0.9984 and 0.9992 for PRM and FEN, respectively. Major FPSE experimental variables were investigated in detail, such as contact time with the FPSE membrane, pH and electrolyte concentration, and the volume and type of desorption solvent. Under the optimized conditions, the developed method showed satisfactory reproducibility with relative standard deviations less than 2.5% and low limits of detection of 2.98 and 3.02 ng mL−1 for PRM and FEN, respectively. The combined procedure allows for enhancement factors ranging from 88 to 113, with pre-concentration values of 125 for both analytes. The chromatographic resolutions were approx. 12 for FEN (retention factor of 3.52) and PRM (retention factor of 6.09), respectively, with a selectivity factor of 1.73. Finally, the validated method was successfully applied to real environmental water samples for the determination of these pesticides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yilmaz E, Soylak M (2016) Preparation and characterization of magnetic carboxylated nano diamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples. Talanta 158:152–158

    Article  CAS  PubMed  Google Scholar 

  2. Vazquez PP, Lozano A, Ucles S, Ramos MMG, Fernandez-Alba AR (2015) A sensitive and efficient method for routine pesticide multi residue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1426:161–173

    Article  CAS  PubMed  Google Scholar 

  3. Miao QC, Wang JM, Nie J, Wu HZ, Liu YP, Li ZG, Qian MR (2016) Magnetic dispersive solid-phase extraction based on a novel adsorbent for the detection of triazole pesticide residues in honey by HPLC-MS/MS. Anal Methods 8:5296–5303

    Article  CAS  Google Scholar 

  4. Fukushima M, Katagi T (2006) Photodegradation of fenitrothion and parathion in tomato epicuticular waxes. J Agric Food Chem 54:474–479

    Article  CAS  PubMed  Google Scholar 

  5. Kandil MA, Abdallah IS, Abou-Yousef HM, Abdallah NA, Fouad EA (2017) Mechanism of resistance to pirimicarb in the cowpea aphid Aphis craccivora. Crop Prot 94:173–177

    Article  CAS  Google Scholar 

  6. Bazmandegan-Shamili A, Dadfarnia S, Shabani AMH, Moghadam MR, Saeidi M (2018) MultiSimplex optimization of the dispersive solid-phase microextraction and determination of fenitrothion by magnetic molecularly imprinted polymer and high-performance liquid chromatography. J Iran Chem Soc 15:1181–1189

    Article  CAS  Google Scholar 

  7. Larki A (2017) A novel application of carbon dots for colorimetric determination of fenitrothion insecticide based on the microextraction method. Spectrochim Acta A Mol Biomol Spectrosc 173:1–5

    Article  CAS  PubMed  Google Scholar 

  8. Canlı AG, Sürücü B, Ulusoy HI, Yılmaz HI, Kabir A, Locatelli M (2019) Analytical methodology for trace determination of propoxur and fenitrothion pesticide residues by decanoic acid modified magnetic nanoparticles. Molecules 24(24):4621

    Article  PubMed Central  CAS  Google Scholar 

  9. Locatelli M, Furton KG, Tartaglia A, Sperandio E, Ulusoy HI, Kabir A (2019) An FPSE-HPLC-PDA method for rapid determination of solar UV filters in human whole blood, plasma and urine. J Chromatogr B 1118-1119:40–50

    Article  Google Scholar 

  10. Niessen WMA, Manini P, Andreoli R (2006) Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrom Rev 25:881–899

    Article  CAS  PubMed  Google Scholar 

  11. Chen LN, Song FR, Liu ZQ, Zheng Z, Xing JP, Liu SY (2012) Multi-residue method for fast determination of pesticide residues in plants used in traditional Chinese medicine by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1225:132–140

    Article  CAS  PubMed  Google Scholar 

  12. Rousis NI, Bade R, Bijlsma L, Zuccato E, Sancho JV, Hernandez F, Castiglioni S (2017) Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environ Res 156:31–38

    Article  CAS  PubMed  Google Scholar 

  13. Gilbert-Lopez B, Garcia-Reyes JF, Molina-Diaz A (2009) Sample treatment and determination of pesticide residues in fatty vegetable matrices. Talanta 79:109–128

    Article  CAS  PubMed  Google Scholar 

  14. Szpyrka E, Kurdziel A, Matyaszek A, Podbielska M, Rupar J, Slowik-Borowiec M (2015) Evaluation of pesticide residues in fruits and vegetables from the region of south-eastern Poland. Food Control 48:137–142

    Article  CAS  Google Scholar 

  15. Hegazy AM, Abdelfatah RM, Mahmoud HM, Elsayed MA (2020) Development and validation of two robust simple chromatographic methods for estimation of tomatoes specific pesticides’ residues for safety monitoring prior to food processing line and evaluation of local samples. Food Chem 306:125640

    Article  CAS  PubMed  Google Scholar 

  16. Yi LX, Fang R, Chen GH (2013) Molecularly imprinted solid-phase extraction in the analysis of agrochemicals. J Chromatogr Sci 51:608–618

    Article  CAS  PubMed  Google Scholar 

  17. Galuszka A, Konieczka P, Migaszewski ZM, Namiesnik J (2012) Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem 37:61–72

    Article  CAS  Google Scholar 

  18. Samanidou V, Kaltzi I, Kabir A, Furton KG (2016) Simplifying sample preparation using fabric phase sorptive extraction technique for the determination of benzodiazepines in blood serum by high-performance liquid chromatography. Biomed Chromatogr 30:829–836

    Article  CAS  PubMed  Google Scholar 

  19. Kabir A, Furton KG, Tinari N, Grossi L, Innosa D, Macerola D, Tartaglia A, Di Donato V, D'Ovidio C, Locatelli M (2018) Fabric phase sorptive extraction-high performance liquid chromatography-photo diode array detection method for simultaneous monitoring of three inflammatory bowel disease treatment drugs in whole blood, plasma and urine. J Chromatogr B 1084:53–63

    Article  CAS  Google Scholar 

  20. Celeiro M, Acerbi R, Kabir A, Furton KG, Llompart M (2020) Development of an analytical methodology based on fabric phase sorptive extraction followed by gas chromatography-tandem mass spectrometry to determine UV filters in environmental and recreational waters. Anal Chim Acta X 4:100038

    Google Scholar 

  21. Kaur R, Rani S, Malik AK, Kabir A, Furton KG (2019) Application of fabric phase sorptive extraction with gas chromatography and mass spectrometry for the determination of organophosphorus pesticides in selected vegetable samples. J Sep Sci 42:862–870

    Article  CAS  PubMed  Google Scholar 

  22. Pérez-Mayán L, Rodríguez I, Ramil M, Kabir A, Furton KG, Cela R (2018) Fabric phase sorptive extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry for the determination of fungicides and insecticides in wine. J Chromatogr A 1584:13–23

    Article  PubMed  CAS  Google Scholar 

  23. Mesa R, Kabir A, Samanidou V, Furton KG (2019) Simultaneous determination of selected estrogenic endocrine disrupting chemicals and bisphenol a residues in whole milk using fabric phase sorptive extraction coupled to HPLC-UV detection and LC-MS/MS. J Sep Sci 42:598–608

    Article  CAS  PubMed  Google Scholar 

  24. Kaur R, Kaur R, Rani S, Malik AK, Kabir A, Furton KG, Samanidou VF (2019) Rapid monitoring of organochlorine pesticide residues in various fruit juices and water samples using fabric phase sorptive extraction and gas chromatography-mass spectrometry. Molecules 24:1013

    Article  CAS  PubMed Central  Google Scholar 

  25. Guedes-Alonso R, Ciofi L, Sosa-Ferrera Z, Juan Santana-Rodriguez J, del Bubba M, Kabir A, Furton KG (2016) Determination of androgens and progestogens in environmental and biological samples using fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1437:116–126

    Article  CAS  PubMed  Google Scholar 

  26. Alcudia-León MC, Lucena R, Cárdenas S, Valcárcel M, Kabir A, Furton KG (2017) Integrated sampling and analysis unit for the determination of sexual pheromones in environmental air using fabric phase sorptive extraction and headspace-gas chromatography–mass spectrometry. J Chromatogr A 1488:17–25

    Article  PubMed  CAS  Google Scholar 

  27. Samanidou V, Michaelidou K, Kabir A, Furton KG (2017) Fabric phase sorptive extraction of selected penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode array detection. Food Chem 224:131–138

    Article  CAS  PubMed  Google Scholar 

  28. Aznar M, Úbeda S, Nerin C, Kabir A, Furton KG (2017) Fabric phase sorptive extraction as a reliable tool for rapid screening and detection of freshness markers in oranges. J Chromatogr A 1500:32–42

    Article  CAS  PubMed  Google Scholar 

  29. Kazantzi V, Anthemidis A (2017) Fabric sol–gel phase sorptive extraction technique: a review. Separations 4:20

    Article  CAS  Google Scholar 

  30. Montesdeoca-Esponda S, Guedes-Alonso R, Santana-Viera S, Sosa-Ferrera Z, Santana-Rodríguez J (2018) Applications of fabric phase sorptive extraction to the determination of micropollutants in liquid samples. Separations 5:35

    Article  CAS  Google Scholar 

  31. Tuzimski T, Rejczak T (2016) Application of HPLC-DAD after SPE/QuEChERS with ZrO2-based sorbent in d-SPE clean-up step for pesticide analysis in edible oils. Food Chem 190:71–79

    Article  CAS  PubMed  Google Scholar 

  32. Kabir A, Locatelli M, Ulusoy HI (2017) Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations 4:36

    Article  CAS  Google Scholar 

  33. Kabir A, Mesa R, Jurmain J, Furton K (2017) Fabric phase sorptive extraction explained. Separations 4:21

    Article  CAS  Google Scholar 

  34. Locatelli M, Kabir A, Innosa D, Lopatriello T, Furton KG (2017) A fabric phase sorptive extraction-high performance liquid chromatography-photo diode array detection method for the determination of twelve azole antimicrobial drug residues in human plasma and urine. J Chromatogr B 1040:192–198

    Article  CAS  Google Scholar 

  35. Tankiewicz M, Biziuk M (2018) Fast, sensitive and reliable multi-residue method for routine determination of 34 pesticides from various chemical groups in water samples by using dispersive liquid–liquid microextraction coupled with gas chromatography–mass spectrometry. Anal Bioanal Chem 410:1533–1550

    Article  CAS  PubMed  Google Scholar 

  36. Locatelli M, Tinari N, Grassadonia A, Tartaglia A, Macerola D, Piccolantonio S, Sperandio E, D'Ovidio C, Carradori S, Ulusoy HI, Furton KG, Kabir A (2018) FPSE-HPLC-DAD method for the quantification of anticancer drugs in human whole blood, plasma, and urine. J Chromatogr B 1095:204–213

    Article  CAS  Google Scholar 

  37. Taraboletti A, Goudarzi M, Kabir A, Moon BH, Laiakis E, Lacombe J, Ake P, Shoishiro S, Brenner D, Fornace A, Zenhausern F (2019) Fabric phase sorptive extraction-a metabolomic pre-processing approach for ionizing radiation exposure assessment. J Proteome Res 18(8):3020–3031

    Article  CAS  PubMed  Google Scholar 

  38. Kabir A, Furton KG, Malik A (2013) Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC Trends Anal Chem 45:197–218

    Article  CAS  Google Scholar 

  39. Lakade SS, Borrull F, Furton KG, Kabir A, Fontanals N, Maria Marcé R (2015) Comparative study of different fabric phase sorptive extraction sorbents to determine emerging contaminants from environmental water using liquid chromatography-tandem mass spectrometry. Talanta 144:1342–1351

    Article  CAS  PubMed  Google Scholar 

  40. Lakade SS, Borrull F, Furton KG, Kabir A, Marce RM, Fontanals N (2015) Dynamic fabric phase sorptive extraction for a group of pharmaceuticals and personal care products from environmental waters. J Chromatogr A 1456:19–26

    Article  CAS  Google Scholar 

  41. Zhou S, Chen H, Wu B, Ma C, Ye Y (2012) Sensitive determination of carbamates in fruit and vegetables by a combination of solid-phase extraction and dispersive liquid-liquid microextraction prior to HPLC. Microchim Acta 176:419–427

    Article  CAS  Google Scholar 

  42. Zhou J, Ma C, Zhou S, Ma P, Chen F, Qi Y, Chen H (2010) Preparation, evaluation and application 23 of molecularly imprinted solid-phase microextraction monolith for selective extraction of pirimicarb in tomato and pear. J Chromatogr A 1217:7478–7483

    Article  CAS  PubMed  Google Scholar 

  43. Selva TMG, de Araujo WR, Bacil RP, Paixão TRLC (2017) Study of electrochemical oxidation and quantification of the pesticide pirimicarb using a boron-doped diamond electrode. Electrochim Acta 246:588–596

    Article  CAS  Google Scholar 

  44. Qi P, Wang J, Wang X, Wang X, Wang Z, Xu H, di S, Wang Q, Wang X (2018) Sensitive determination of fenitrothion in water samples based on an electrochemical sensor layered reduced graphene oxide, molybdenum sulfide (MoS 2 )-Au and zirconia films. Electrochim Acta 292:667–675

    Article  CAS  Google Scholar 

  45. Maddah B, Javadi SS, Mirzaei A, Rahimi-Nasrabadi M (2015) Application of electrospun polystyrene nanofibers as solid phase extraction sorbent for the preconcentration of diazinon and fenitrothion in environmental waters. J Liq Chromatogr Relat Technol 38(2):208–214

    Article  CAS  Google Scholar 

  46. Malhat F, Boulangé J, Abdelraheem E, Abd Allah O, Abd el-Hamid R, Abd el-Salam S (2017) Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography–flame photometric detector: decline pattern and risk assessment. Food Chem 229:814–819

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was performed with partial contributions obtained from the other projects supported by Sivas Cumhuriyet University Scientific Research Projects Commission, Turkey. This article is based upon work from the Sample Preparation Task Force and Network, supported by the Division of Analytical Chemistry of the European Chemical Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Halil İbrahim Ulusoy or Marcello Locatelli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulusoy, H.İ., Köseoğlu, K., Kabir, A. et al. Fabric phase sorptive extraction followed by HPLC-PDA detection for the monitoring of pirimicarb and fenitrothion pesticide residues. Microchim Acta 187, 337 (2020). https://doi.org/10.1007/s00604-020-04306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04306-7

Keywords

Navigation