Skip to main content
Log in

Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a new coating for use in solid-phase microextraction (SPME). Silver nanoparticles (AgNPs) were prepared by using gallic acid or glucose as the reducing agents, and then supported onto a stainless steel wire that was previously coated with a silver mirror. Coating with AgNPs was performed by a layer-by-layer approach of up to eight cycles of consecutive deposition of AgNPs and the thiol linker 1,8-octanedithiol. This procedure allows proper control of the coating thickness. Thicknesses are 3.2 μm and 3.5 μm with AgNPs obtained with gallic acid and glucose, respectively. This is in agreement with theoretical estimations (3.8 μm). The fibers were used in the direct-immersion SPME-GC-FID determination of 16 polycyclic aromatic hydrocarbons (PAHs) from different waters. The performance of the method was compared to the one using polydimethylsiloxane fibers (100 μm), which is the most suitable commercial SPME fiber for PAHs. Despite the low thickness of the AgNP coatings (compared to PDMS), the analytical features of the method using the most adequate coating (AgNPs prepared with gallic acid) include: (a) limits of detection down to 0.6 ng·mL−1; (b) intra-day, inter-day, and inter-fiber precisions (expressed as RSDs) lower than 22, 26 and 25%, respectively; and (c) an operational lifetime of ~150 extractions/desorption cycles. The analysis of various spiked environmental waters using these fibers resulted in adequate analytical performance.

Silver nanoparticle based coatings for solid-phase microextraction fibers were prepared by a layer-by-layer approach. They were used for determination of 16 PAHs in waters by gas chromatography. Limits of detection are < 14 μg·L−1 and intra-day, inter-day, and inter-fiber precisions are <26%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pawliszyn J, Arthur CL (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Trends Anal Chem 62:2145–2148. https://doi.org/10.1021/ac00218a019

    Article  Google Scholar 

  2. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169–1190. https://doi.org/10.1007/s00604-014-1265-y

    Article  CAS  Google Scholar 

  3. Piri-Moghadam H, Alam MN, Pawliszyn J (2017) Review of geometries and coating materials in solid phase microextraction: opportunities, limitations, and future perspectives. Anal Chim Acta 984:42–65. https://doi.org/10.1016/j.aca.2017.05.035

    Article  CAS  PubMed  Google Scholar 

  4. Pacheco-Fernández I, Gutiérrez-Serpa A, Afonso AM, Pino V (2018) Metallic coatings in solid-phase microextraction: environmental applications. In: Zhang J, Jung YG (eds) Advanced ceramic and metallic coating and thin film materials for energy and environmental applications, 1st edn. Springer, Switzerland, pp 217–243

    Chapter  Google Scholar 

  5. Dastafkan K, Khajeh M, Ghaffari-Moghaddam M (2015) Silver nanoparticles for separation and preconcentration processes. Trends Anal Chem 64:118–126. https://doi.org/10.1016/j.trac.2014.08.017

    Article  CAS  Google Scholar 

  6. Liu H, Ran F, Wang X, He N, Guo Y (2018) A chromium (III) oxide-coated steel wire prepared by arc ion plating for use in solid-phase microextraction of aromatic hydrocarbons. Microchim Acta 185:82–90. https://doi.org/10.1007/s00604-017-2535-2

    Article  CAS  Google Scholar 

  7. Sarafraz-Yasdi A, Rounaghi G, Vatani H, Razavipanah I, Amiri A (2015) Headspace solid phase microextraction of volatile aromatic hydrocarbons using a steel wire coated with an electrochemically prepared nanocomposite consisting of polypyrrole, carbon nanotubes, and titanium oxide. Microchim Acta 182:217–225. https://doi.org/10.1007/s00604-014-1320-8

    Article  CAS  Google Scholar 

  8. Liu H, Liu L, Li Y, Wang X, Du X (2014) Preparation of a robust and sensitive gold-coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water. Anal Lett 47:1759–1771. https://doi.org/10.1080/00032719.2014.880171

    Article  CAS  Google Scholar 

  9. Gutiérrez-Serpa A, Rocío-Bautista P, Pino V, Jiménez-Moreno F, Jiménez Abizanda AI (2017) Gold nanoparticles based solid-phase microextraction coatings for determining organochlorine pesticides in aqueous environmental samples. J Sep Sci 40:2009–2021. https://doi.org/10.1002/jssc.201700046

    Article  CAS  PubMed  Google Scholar 

  10. Liu CL, Zhang X, Li J, Cui J, Shi Y, Wang L, Zhan J (2015) Silver nanoparticle aggregates on metal fibers for solid phase microextraction–surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Analyst 140:4668–4675. https://doi.org/10.1039/c5an00590f

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, HOu X, Li J, Liu S, Guo Y (2015) Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction. J Sep Sci 38:2439–2446. https://doi.org/10.1002/jssc.201500308

    Article  CAS  PubMed  Google Scholar 

  12. Huang S, Xu J, Tao X, Chen X, Zhu F, Wang Y, Jiang R, Ouyang G (2017) Fabrication of polyaniline/silver composite coating as a dual-functional platform for microextraction and matrix-free laser desorption/ionization. Talanta 172:155–161. https://doi.org/10.1016/j.talanta.2017.05.044

    Article  CAS  PubMed  Google Scholar 

  13. Liu Z, Wang L, Bian W, Zhang M, Zhan J (2017) Porous silver coating fiber for rapidly screening organotin compounds by solid phase microextraction coupled with surface enhanced Raman spectroscopy. RSC Adv 7:3117–3124. https://doi.org/10.1039/c6ra25491h

    Article  CAS  Google Scholar 

  14. Li J, Ma L, Tang M, Xu L (2013) C12-ag wire as solid-phase microextraction fiber for determination of benzophenone ultraviolet filters in river water. J Chromatogr A 1298:1–8. https://doi.org/10.1016/j.chroma.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  15. Feng J, Sun M, Li J, Liu X, Jiang S (2011) A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique. Anal Chim Acta 701:174–180. https://doi.org/10.1016/j.aca.2011.05.040

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Guo M, Zhang Y, Song W, Li Y, Wang X, Du X (2015) Self-assembly of alkyldithiols on a novel dendritic silver nanostructure electrodeposited on a stainless steel wire as a fiber coating for solid-phase microextraction. RSC Adv 5:71859–71867. https://doi.org/10.1039/c5ra10093c

    Article  CAS  Google Scholar 

  17. Hasanli F, Mohammadiazar S, Bahmaei M, Sharif AAM (2018) Coating of sol-gel film on silver nanodendrite as a novel solid-phase microextraction fiber for determination of volatile aldehydes in edible oils. Food Anal Methods In press. https://doi.org/10.1007/s12161-018-1189-y

  18. Zhu S, Zhang X, Cui J, Shi Y, Jiang X, Liu Z, Zhan J (2015) Silver nanoplates-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer. Analyst 140:2815–2822. https://doi.org/10.1039/c4an02109f

    Article  CAS  PubMed  Google Scholar 

  19. Rodríguez-Santana P, Jiménez-Abizanda AI, Hernández-Creus A, Jiménez-Moreno F (2017) Synthesis and physical characterization of ag nanoparticles and their interaction with Fe. J Lumin 190:207–214. https://doi.org/10.1016/j.jlumin.2017.05.052

    Article  CAS  Google Scholar 

  20. Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534–1568. https://doi.org/10.3390/ijms17091534

    Article  CAS  PubMed Central  Google Scholar 

  21. Wani IA, Ganguly A, Ahmed J, Ahmad T (2011) Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Mater Lett 65:520–522. https://doi.org/10.1016/j.matlet.2010.11.003

    Article  CAS  Google Scholar 

  22. Kelly KL, Coronado E, Zhao LL, Schatz C (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  23. Desai R, Mankad V, Gupta SK Jha PK (2012) Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci Nanotechnol Lett 4:30–34. https://doi.org/10.1166/nnl.2012.1278

    Article  CAS  Google Scholar 

  24. Vadiraj KT, Belagali SL (2016) Synthesis and optical characterization of nickel doped zinc sulphide without capping agent. J Mater Sci Mater Electron 27:2885–2889. https://doi.org/10.1007/s10854-01504105-x

    Article  CAS  Google Scholar 

  25. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B-Basic Solid State Phys 15:627–637. https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  26. Kubackova J, Izquiedo-Lorenzo I, Jancura D, Miskovsky P, Sánchez-Cortes S (2014) Adsorption of linear aliphatic α,ω-dithiols on plasmonic metal nanoparticles: a structural study based on surface-enhanced Raman spectra. Phys Chem Chem Phys 16:11461–11470. https://doi.org/10.1039/c4cp00424h

    Article  CAS  PubMed  Google Scholar 

  27. Feng J, Sun M, Liu H, Li J, Liu X, Jiang S (2010) Au nanoparticles as a novel coating for solid-phase microextraction. J Chromatogr A 1217:8079–8086. https://doi.org/10.1016/j.chroma.2010.10.089

    Article  CAS  PubMed  Google Scholar 

  28. Cheng X, Forsythe J, Peterkin E (2013) Some factors affecting SPME analysis and PAHs in Philadelphia’s urban waterways. Water Res 47:2331–2340. https://doi.org/10.1016/j.watres.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  29. King AJ, Readman JW, Zhou JL (2004) Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 523:259–267. https://doi.org/10.1016/j.aca.2004.07.050

    Article  CAS  Google Scholar 

  30. Doong R, Chang S, Sun Y (2000) Solid-phase microextraction for determining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 879:177–188. https://doi.org/10.1016/S0021-9673(00)00347-2

    Article  CAS  PubMed  Google Scholar 

  31. López-Darias J, Pino V, Meng Y, Anderson JL, Afonso AM (2010) Utilization of a benzyl functionalized polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and alkylphenols in waters using solid-phase microextraction coupled to gas chromatography-flame ionization detection. J Chromatogr A 1217:7189–7197. https://doi.org/10.1016/j.chroma.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  32. Trujillo-Rodríguez MJ, Yu H, Cole WTS, Ho TD, Pino V, Anderson JL, Afonso AM (2014) Polymeric ionic liquid coatings versus comercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Talanta 121:153–162. https://doi.org/10.1016/j.talanta.2013.12.046

    Article  CAS  PubMed  Google Scholar 

  33. Cordero-Vaca M, Trujillo-Rodríguez MJ, Zhang C, Pino V, Anderson JL, Afonso AM (2015) Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography. Anal Bioanal Chem 407:4615–4627. https://doi.org/10.1007/s00216-015-8658-6

    Article  CAS  PubMed  Google Scholar 

  34. Trujillo-Rodríguez MJ, Nan H, Anderson JL (2018) Expanding the use of polymeric ionic liquids in headspace solid-phase microextraction: determination of ultraviolet filters in water samples. J Chromatogr A 1540:11–20. https://doi.org/10.1016/j.chroma.2018.01.048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V.P. thanks the Spanish Ministry of Economy and Competitiveness (MINECO) for the projects ref. MAT2014-57465-R and ref. MAT2017-89207-R. A.G.-S. acknowledges his pre-doctoral contract to project ref. MAT2014-57465-R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Verónica Pino or Ana I. Jiménez-Abizanda.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 3340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Serpa, A., Napolitano-Tabares, P.I., Pino, V. et al. Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Microchim Acta 185, 341 (2018). https://doi.org/10.1007/s00604-018-2880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2880-9

Keywords

Navigation