Skip to main content
Log in

Colorimetric determination of uric acid based on the suppression of oxidative etching of silver nanoparticles by chloroauric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric method is described for the determination of uric acid (UA). The assay is based on oxidative etching of silver nanoparticles (AgNPs) by chloroauric acid (HAuCl4). The presence of UA suppresses the redox reaction between AgNPs and HAuCl4 because a competitive reaction occurs between HAuCl4 and UA. This results in a color change of the solution from brown to yellow. In parallel, the absorbance is blue shifted from 477 to 428 nm. The method has a detection limit as low as 30 pM (at S/N = 3) and a linear response range that covers the 0.1 nM to 0.1 mM UA concentration range. The reliability of the method was successfully demonstrated by analyzing spiked serum samples.

Schematic representation of a colorimetric method for determination of uric acid (UA) based on oxidative etching of silver nanoparticles by HAuCl4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alvarez-Lario B, Macarron-Vicente J (2010) Uric acid and evolution. Rheumatology 49:2010–2015

    Article  CAS  Google Scholar 

  2. Wang X, Li ZG, Lai JH, Tang XM, Qiu P (2018) Sensitive and highly selectivebiosensor based on triangular au nanoplatesfor detection of uric acid in human serum. Chem Afr 1:29–35

    Article  Google Scholar 

  3. Raj CR, Ohsaka T (2003) Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J Electroanal Chem 540:69–77

    Article  Google Scholar 

  4. Falasca GF (2006) Metabolic diseases: gout. Clin Dermatol 24:498

    Article  Google Scholar 

  5. Nakagawa T, Kang DH, Feig D, Sanchez-Lozada LG, Srinivas TR, Sautin Y, Ejaz AA, Segal M, Johnson RJ (2006) Unearthing uric acid: an ancient factor with recently found significance in renal and cardiovascular disease. Kidney Int 69:1722–1725

    Article  CAS  Google Scholar 

  6. Rocha DL, Rocha FRP (2010) A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchem J 94:53–59

    Article  CAS  Google Scholar 

  7. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41:1183–1190

    Article  CAS  Google Scholar 

  8. Chen WJ, Wu Y, Zhao X, Liu S, Song FR, Liu ZY (2016) Screening the anti-gout traditional herbs from TCM using an in vitro method. Chin Chem Lett 27:1701–1707

    Article  CAS  Google Scholar 

  9. Tang Q, Li ZY, Wei YB, Yang X, Liu LT, Gong CB, Ma XB, Lam MHW, Chow CF (2016) Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids. Mater Sci Eng C 66:33–39

    Article  CAS  Google Scholar 

  10. Munoz JA, Lopez-Mesas M, Valiente M (2010) Development and validation of a simple determination of urine metabolites (oxalate, citrate, uric acid and creatinine) by capillary zone electrophoresis. Talanta 81:392–397

    Article  CAS  Google Scholar 

  11. Li XL, Li G, Jiang YZ, Kang DZ, Jin CH, Shi Q, Jin TF, Inoue K, Todoroki K, Toyo’oka T, Min JZ (2015) Human nails metabolite analysis: a rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection. J Chromatogr B 1002:394–398

    Article  CAS  Google Scholar 

  12. Dai XH, Fang X, Zhang CM, Xu RF, Xu B (2007) Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. J Chromatogr B 857:287–295

    Article  CAS  Google Scholar 

  13. Jin D, Seo MH, Huy BT, Pham QT, Conte ML, Thangadurai D, Lee YI (2016) Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens Bioelectron 77:359–365

    Article  CAS  Google Scholar 

  14. Fang AJ, Wu QQ, Lu QJ, Chen HY, Li HT, Liu ML, Zhang YY, Yao SZ (2016) Upconversion ratiometric fluorescence and colorimetric dual-readout assay for uric acid. Biosens Bioelectron 86:664–670

    Article  CAS  Google Scholar 

  15. Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734–740

    Article  CAS  Google Scholar 

  16. Wu WC, Chang HW, Tsai YC (2011) Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid at silicon carbide coated electrodes. Chem Commun 47:6458–6460

    Article  CAS  Google Scholar 

  17. Zhao DY, Yu GL, Tian KL, Xu CX (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82:119–126

    Article  CAS  Google Scholar 

  18. Yu P, Zhang JW, Zheng T, Wang T (2016) Influence of boron doped level on the electrochemical behavior of boron doped diamond electrodes and uric acid detection. Colloids Surf A Physicochem Eng Asp 494:241–247

    Article  CAS  Google Scholar 

  19. Sun CL, Chang CT, Lee HH, Zhou J, Wang J, Sham TK, Pong WF (2011) Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5:7788–7795

    Article  CAS  Google Scholar 

  20. Yu J, Wang S, Ge L, Ge S (2011) A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron 26:3284–3289

    Article  CAS  Google Scholar 

  21. Gao Y, Jin C, Li X, Wu K, Gao L, Lyu X, Zhang X, Zhang X, Luo X, Liu QY (2019) Two-dimensional porphyrin-Co9S8 nanocomposites with synergistic peroxidase-like catalysis: synthesis and application toward colorimetric biosensing of H2O2 and glutathione. Colloid Surface A 568:248–258

    Article  CAS  Google Scholar 

  22. Liu H, Ding YN, Yang BC, Liu ZX, Zhang X, Liu QY (2018) Iron doped CuSn(OH)6 microspheres as a peroxidase-mimicking artificial enzyme for H2O2 colorimetric detection. ACS Sustain Chem Eng 6:14383–14393

    Article  CAS  Google Scholar 

  23. Wu KL, Yang BC, Zhu XX, Chen W, Luo XL, Liu ZX, Zhang X, Liu QY (2018) Cobalt and nickel bimetallic sulfides nanoparticles immobilized on montmorillonite demonstrating a peroxidase-like activity for the H2O2 detection. New J Chem 42:18749–18758

    Article  CAS  Google Scholar 

  24. Ding YN, Liu H, Gao LN, Fu M, Luo XL, Zhang X, Zhang XX, Zeng RC, Liu QY (2019) Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2. J Alloys Compd 785:1189–1197

    Article  CAS  Google Scholar 

  25. Lian JJ, Liu P, Jin CQ, Shi ZQ, Luo XL, Liu QY (2019) Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Microchim Acta 186:332

    Article  Google Scholar 

  26. Chen M, Yang B, Zhu J, Liu H, Zhang X, Zheng X, Liu QY (2018) FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H2O2. Mater Sci Eng C 90:610–620

    Article  CAS  Google Scholar 

  27. Pan YD, Yang YF, Pang YJ, Shi Y, Long YJ, Zheng HZ (2018) Enhancing the peroxidase-like activity of ficin via heme binding and colorimetric detection for uric acid. Talanta 185:433–438

    Article  CAS  Google Scholar 

  28. Wang J, Fang X, Zhang YH, Cui XQ, Zhao H, Li XJ, Li ZX (2018) A simple and rapid colorimetric probe for uric acid detection based on redox reaction of 3,3′,5,5′-tetramethylbenzidine with HAuCl4. Colloid Surface A 555:565–571

    Article  CAS  Google Scholar 

  29. Wang X, Yao Q, Tang XM, Zhong HP, Qiu P, Wang XL (2019) A highly selective and sensitive colorimetric detection of uric acid in human serum based on MoS2-catalyzed oxidation TMB. Anal Bioanal Chem 411:943–952

    Article  CAS  Google Scholar 

  30. Lei G, Gao PF, Yang T, Zhou J, Zhang HZ, Sun SS, Gao MX, Huang CZ (2017) Photoinduced electron transfer process visualized on single silver nanoparticles. ACS Nano 11:2085–2093

    Article  CAS  Google Scholar 

  31. Wang YY, Liu X, Lu ZW, Liu T, Zhao LJ, Ding F, Zou P, Wang XX, Zhao QB, Rao HB (2019) Molecularly imprinted polydopamine modified with nickel nanoparticles wrapped with carbon: fabrication, characterization and electrochemical detection of uric acid. Microchim Acta 186:414

    Article  Google Scholar 

  32. Huang HP, Yue YF, Chen ZZ, Chen YN, Wu SZ, Liao JS, Liu SJ, Wen HR (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189

    Article  Google Scholar 

  33. Alula MT, Lemmens P, Bo L, Wulferding D, Yang J, Spende H (2019) Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Anal Chim Acta 1073:62–71

    Article  CAS  Google Scholar 

  34. Pang S (2019) A ratiometric fluorescent probe for detection of uric acid based on the gold nanoclusters-quantum dots nanohybrid. Spectrochim Acta A 222:117233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors gratefully acknowledge the financial support of Science and Technology Innovation Funds of Xinxiang University (Grant No. 15ZP05), the Natural Science Foundation of China (Grant No. 21801215) and Science Technology Open Cooperation Program of Henan Province of China (Grant No. 182106000029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, J. & Chen, Z. Colorimetric determination of uric acid based on the suppression of oxidative etching of silver nanoparticles by chloroauric acid. Microchim Acta 187, 18 (2020). https://doi.org/10.1007/s00604-019-4004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4004-6

Keywords

Navigation