Skip to main content
Log in

Electrochemiluminescent immunoassay for the lung cancer biomarker CYFRA21-1 using MoOx quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Molybdenum oxide quantum dots (MoOx QDs) were synthesized by a one-pot method and used as a versatile probe in an electrochemiluminescent (ECL) immunoassay of the non-small cell lung cancer biomarker cytokeratin 19 fragment 21–1 (CYFRA21-1) as a model analyte. The MoOx QDs exhibited stable and strong cathodic green ECL, with an emission peak at 535 nm, in the presence of K2S2O8 within the potential range of −2.0 to 0 V. On exposure to CYFRA21-1, the ECL decreases because of the immunoreaction between CYFRA21-1 and its antibody which generates a barrier for electron transfer. The determination of CYFRA21-1 with favorable analytical performances was successfully realized under the optimal conditions. ECL decreases linearly in the 1 pg mL−1 to 350 ng mL−1 CYFRA21-1 concentration range, and the detection is as low as 0.3 pg mL−1. Excellent recoveries from CYFRA21-1-spiked human serum indicate that the assay can be operated under physiological conditions.

Schematic representation of the fabrication of molybdenum oxide quantum dots (MoOx QDs) and the electrochemiluminescent (ECL) immunoassay based on the use of the MoOx QDs ECL probe for cytokeratin 19 fragment 21–1 (CYFRA21-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lv XH, Pang XH, Li YY, Yan T, Cao W, Du B, Wei Q (2015) Electrochemiluminescent immune-modified electrodes based on Ag2Se@CdSe Nanoneedles loaded with Polypyrrole intercalated Graphene for detection of CA72-4. ACS Appl Mater Interfaces 7:867–872

    Article  CAS  Google Scholar 

  2. Yao X, Yan PP, Tang QH, Deng AP, Li JG (2013) Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification for ultrasensitive detection of clenbuterol. Anal Chim Acta 798:82–88

    Article  CAS  Google Scholar 

  3. Yan PP, Zhang J, Tang QH, Deng AP, Li JG (2014) A quantum dot based electrochemiluminescent immunosensor for the detection of pg level phenylethanolamine a using gold nanoparticles as substrates and electron transfer accelerators. Analyst 139:4365–4372

    Article  CAS  Google Scholar 

  4. Liu X, Jiang H, Fang Y, Zhao W, Wang NY, Zang GZ (2015) Quantum dots based potential-resolution dual-targets Electrochemiluminescent Immunosensor for subtype of tumor marker and its serological evaluation. Anal Chem 87:9163–9169

    Article  CAS  Google Scholar 

  5. Pang XH, Li JX, Zhao YB, Wu D, Zhang Y, Du B, Ma HM, Wei Q (2015) Label-free Electrochemiluminescent Immunosensor for detection of Carcinoembryonic antigen based on Nanocomposites of GO/MWCNTs-COOH/au@CeO2. ACS Appl Mater Interfaces 7:19260–19267

    Article  CAS  Google Scholar 

  6. Geng J, Jia XD, Zhu JJ (2011) Sonochemical selective synthesis of ZnO/CdS core/shell nanostructures and their optical properties. CrystEngComm 13:193–198

    Article  CAS  Google Scholar 

  7. Zhou J, Han TQ, Ma HM, Yan T, Pang XH, Li YY, Wei Q (2015) A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots. Anal Chim Acta 889:82–89

    Article  CAS  Google Scholar 

  8. Hu LY, Zheng J, Zhao K, Deng AP, Li JG (2018) An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac. Biosens Bioelectron 101:260–267

    Article  CAS  Google Scholar 

  9. Peng HP, Jian ML, Deng HH, Wang WJ, Huang ZN, Huang KY, Liu AL, Chen W (2017) Valence states effect on Electrogenerated Chemiluminescence of gold Nanocluster. ACS Appl Mater Interfaces 9:14929–14934

    Article  CAS  Google Scholar 

  10. Zhang L, Hong MF, Chu ZJ, Xu H, Wang SP, Zhao XJ, Xiao SJ (2018) A new copper mediated on-off assay for alkaline phosphatase detection based on MoOx quantum dots. Microchem J 141:170–175

    Article  CAS  Google Scholar 

  11. Xiao SJ, Zhao XJ, Zuo J, Huang HQ, Zhang L (2016) Highly photoluminescent MoOx quantum dots: facile synthesis and application in off-on pi sensing in lake water samples. Anal Chim Acta 906:148–155

    Article  CAS  Google Scholar 

  12. Xiao SJ, Chu ZJ, Zhao XJ, Zhang ZB, Liu YH (2017) Off-on-off detection of the activity of acetylcholine esterase and its inhibitors using MoOx quantum dots as a photoluminescent probe. Microchim Acta 184:4853–4860

    Article  CAS  Google Scholar 

  13. Yuan LL, Niu YS, Li RG, Zheng LH, Wang Y, Liu ML, Xu GF, Huang L, Xu YH (2018) Molybdenum oxide quantum dots prepared via a one-step stirring strategy and their application as fluorescent probes for pyrophosphate sensing and efficient antibacterial materials. J Mater Chem B 6:3240–3245

    Article  CAS  Google Scholar 

  14. Wang N, Tang DY, Zou HY, Jia SY, Sun ZJ, Yang X, Peng J (2018) Synthesis of molybdenum oxide quantum dots with better dispersity and bio-imaging ability by reduction method. Opt Mater 83:19–27

    Article  CAS  Google Scholar 

  15. Xiao SJ, Zhao XJ, Hu PP, Chu ZJ, Huang CZ, Zhang L (2016) Highly Photoluminescent molybdenum oxide quantum dots: one-pot synthesis and application in 2,4,6-trinitrotoluene determination. ACS Appl Mater Interfaces 8:8184–8191

    Article  CAS  Google Scholar 

  16. Ding DD, Guo W, Guo CS, Sun JZ, Zheng NN, Wang F, Yan M, Liu SQ (2017) MoO3-x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale 9:2020–2029

    Article  CAS  Google Scholar 

  17. Ding DD, Huang WC, Song CQ, Yan M, Guo CS, Liu SQ (2017) Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation. Chem Commun 53:6744–6747

    Article  CAS  Google Scholar 

  18. Qiu JD, Peng HZ, Liang RP, Li J, Xia XH (2007) Synthesis, characterization, and immobilization of Prussian blue-modified au nanoparticles: application to Electrocatalytic reduction of H2O2. Langmuir 23:2133–2137

    Article  CAS  Google Scholar 

  19. Sui LL, Xu YM, Zhang XF, Cheng XL, Gao S, Zhao H, Cai Z, Huo LH (2015) Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor. Sensors Actuators B Chem 208:406–414

    Article  CAS  Google Scholar 

  20. Peng HP, Deng HH, Jian ML, Liu AL, Bai FQ, Lin XH, Chen W (2017) Electrochemiluminescence sensor based on methionine-modified gold nanoclusters for highly sensitive determination of dopamine released by cells. Microchim Acta 184:735–743

    Article  CAS  Google Scholar 

  21. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  Google Scholar 

  22. Myung N, Ding Z, Bard AJ (2002) Electrogenerated Chemiluminescence of CdSe Nanocrystals. Nano Lett 2:1315–1319

    Article  CAS  Google Scholar 

  23. Zhang XL, Tang ZR, Dong YP, Wang CM (2018) Electrogenerated chemiluminescence of ZnO nanorods and its sensitive detection of cytochrome C. Talanta 179:139–144

    Article  CAS  Google Scholar 

  24. Wu D, Liu Y, Wang Y, Hu L, Ma H, Wang G, Wei Q (2016) Label-free Electrochemiluminescent Immunosensor for detection of prostate specific antigen based on Aminated Graphene quantum dots and carboxyl Graphene quantum dots. Sci Rep 6:20511

    Article  CAS  Google Scholar 

  25. Lu Q, Wei W, Zhou ZX, Zhou ZX, Zhang YJ, Liu SQ (2014) Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection. Analyst 139:2404–2410

    Article  CAS  Google Scholar 

  26. Dennany L, Hogan CF, Keyes TE, Forster RJ (2006) Effect of surface immobilization on the Electrochemiluminescence of ruthenium-containing Metallopolymers. Anal Chem 78:1412–1417

    Article  CAS  Google Scholar 

  27. Van Houten J, Watts RJ (1976) Temperature dependence of the photophysical and photochemical properties of the tris(2,2′-bipyridyl)ruthenium(II) ion in aqueous solution. J Am Chem Soc 98:4853–4858

    Article  Google Scholar 

  28. Tang M, Zhou ZX, Li SG, Zhao F, Liu SQ (2018) Electrochemiluminescent detection of cardiac troponin I by using soybean peroxidase labeled-antibody as signal amplifier. Talanta 180:47–53

    Article  CAS  Google Scholar 

  29. Zhou Y, Zhuo Y, Liao N, Chai YQ, Yuan R (2014) Ultrasensitive immunoassay based on a pseudobienzyme amplifying system of choline oxidase and luminol-reduced Pt@au hybrid nanoflowers. Chem Commun 50:14627–14630

    Article  CAS  Google Scholar 

  30. Zeng Y, Bao J, Zhao YN, Huo DQ, Chen M, Qi YL, Yang M, Fa HB, Hou CJ (2018) A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1. Bioelectrochemistry 120:183–189

    Article  CAS  Google Scholar 

  31. Wang HQ, Ma ZF (2019) “Off-on” signal amplification strategy amperometric immunosensor for ultrasensitive detection of tumour marker. Biosens Bioelectron 132:265–270

    Article  CAS  Google Scholar 

  32. Zeng Y, Bao J, Zhao YN, Huo DQ, Chen M, Yang M, Fa HB, Hou CJ (2018) A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21-1 based on 3D graphene with gold nanopaticle modified electrode. Talanta 178:122–128

    Article  CAS  Google Scholar 

  33. Kumar S, Sharma JG, Maji S, Malhotra BD (2016) Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosens Bioelectron 78:497–504

    Article  CAS  Google Scholar 

  34. Shan J, Ma ZF (2016) Simultaneous detection of five biomarkers of lung cancer by electrochemical immunoassay. Microchim Acta 183:2889–2897

    Article  CAS  Google Scholar 

  35. Han L, Wang D, Yan L, Petrenko VA, Liu AH (2019) Specific phages-based electrochemical impedimetric immunosensors for label-free and ultrasensitive detection of dual prostate-specific antigens. Sensors Actuators B Chem 297:126727

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely acknowledge the financial support of the National Natural Science Foundation of China (21874020, 21405015), Fujian Province Health Commission Young and Middle-Aged Talent training project (2018-ZQN-62), Fujian Province Young Talent Supporting Project (2019B016), Joint Funds for the Innovation of Science and Technology, Fujian Province (2016Y9056, 2016Y9054), the Science and Technology Project of Fujian Province (2018 L3008), the Natural Science Foundation of Shandong Province (ZR2016BL19), and Program for Fujian Top-notch Innovative Personnel.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen, Zhulai Li or Huaping Peng.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Chen, X., Wu, W. et al. Electrochemiluminescent immunoassay for the lung cancer biomarker CYFRA21-1 using MoOx quantum dots. Microchim Acta 186, 855 (2019). https://doi.org/10.1007/s00604-019-3917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3917-4

Keywords

Navigation