Skip to main content
Log in

Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 141 refs) summarizes the state of the art in the preparation, electrocatalytic and electrochemical sensing applications of 3D porous nanomaterials derived from noble metal-based alloys. The introduction discusses the significance of such materials as electrocatalysts in fuel cells and electrochemical sensors due to their specific advantages. The next large section covers strategies to fabricate nanoporous noble metal-based alloys (including chemical dealloying and electrochemical dealloying, templated-based methods and assembly methods). We then review representative applications of nanoporous noble metal-based alloys in electrocatalysis in fuel cells (methanol, ethanol, formic acid and oxygen). A final section covers electrochemical sensors for small biomolecules (glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nitrite, drugs, etc.). Representative Tables are given that provide a rapid overview on the numerous kinds of materials and applications. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends.

Schematic representation of synthesis and applications of nanoporous noble metal-based alloys. The preparation methods include dealloying, templated and assembly method. The unique porous structure and synergistic effect among alloy atoms greatly enhance their electrocatalytic activity and electrochemical sensing ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang Z, Liu P, Han J, Cheng C, Ning S, Hirata A, Fujita T, Chen M (2017) Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nat Commun 8:1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Xu Y, Zhang B (2014) Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chem Soc Rev 43:2439–2450

    Article  CAS  PubMed  Google Scholar 

  3. Qiu HJ, Gao J, Wen Y, Chiang FK, Yao A, Wang J, Liu X, Du P, Fang G (2018) A general and scalable approach to produce nanoporous alloy nanowires with rugged ligaments for enhanced electrocatalysis. J Mater Chem A 6:12541–12550

    Article  CAS  Google Scholar 

  4. Lu L, Kang J (2018) Amperometric nonenzymatic sensing of glucose at very low working potential by using a nanoporous PdAuNi ternary alloy. Microchim Acta 185:111

    Article  CAS  Google Scholar 

  5. Su L, Gan YX (2012) Nanoporous ag and ag–Sn anodes for energy conversion in photochemical fuel cells. Nano Energy 1:159–163

    Article  CAS  Google Scholar 

  6. Lu L, Huang X, Dong Y, Huang Y, Pan X, Wang X, Feng M, Luo Y, Fang D (2015) Facile method for fabrication of self-supporting nanoporous gold electrodes via cyclic voltammetry in ethylene glycol, and their application to the electrooxidative determination of catechol. Microchim Acta 182:1509–1517

    Article  CAS  Google Scholar 

  7. Weremfo A, Sui TCF, Khan A, Hibbert DB, Zhao C (2017) Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors. Electrochim Acta 231:20–26

    Article  CAS  Google Scholar 

  8. Qiu HJ, Xu HT, Li X, Wang JQ, Wang Y (2015) Core–shell-structured nanoporous PtCu with high cu content and enhanced catalytic performance. J Mater Chem A 3:7939–7944

    Article  CAS  Google Scholar 

  9. Liu X, Wang D, Li Y (2012) Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7:448–466

    Article  CAS  Google Scholar 

  10. Xu C, Zhang Y, Wang L, Xu L, Bian X, Ma H, Ding Y (2009) Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem Mater 21:3110–3116

    Article  CAS  Google Scholar 

  11. Xu C, Hao Q, Duan H (2014) Nanoporous PdPt alloy as a highly active electrocatalyst for formic acid oxidation. J Mater Chem A 2:8875–8880

    Article  CAS  Google Scholar 

  12. Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH (2016) Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing. Biosens Bioelectron 85:669–678

    Article  CAS  PubMed  Google Scholar 

  13. Zhao D, Xu C (2015) A nanoporous palladium-nickel alloy with high sensing performance towards hydrogen peroxide and glucose. J Colloid Interface Sci 447:50–57

    Article  CAS  PubMed  Google Scholar 

  14. Song D, Li Y, Lu X, Sun M, Liu H, Yu G, Gao F (2017) Palladium-copper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides. Anal Chim Acta 982:168–175

    Article  CAS  PubMed  Google Scholar 

  15. Hakamada M, Mabuchi M (2013) Fabrication, microstructure, and properties of nanoporous Pd, Ni, and their alloys by dealloying. Crit Rev Solid State Mater Sci 38:262–285

    Article  CAS  Google Scholar 

  16. Bhattarai JK, Neupane D, Nepal B, Mikhaylov V, Demchenko AV, Stine KJ (2018) Preparation, modification, characterization, and biosensing application of nanoporous gold using electrochemical techniques. Nanomaterials 8:171

    Article  PubMed Central  CAS  Google Scholar 

  17. Duan H, Xu C (2015) Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim Acta 152:417–424

    Article  CAS  Google Scholar 

  18. Li D, Meng F, Wang H, Jiang X, Zhu Y (2016) Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation. Electrochim Acta 190:852–861

    Article  CAS  Google Scholar 

  19. Hou J, Xu C, Zhao D, Zhou J (2016) Facile fabrication of hierarchical nanoporous AuAg alloy and its highly sensitive detection towards dopamine and uric acid. Sensors Actuators B Chem 225:241–248

    Article  CAS  Google Scholar 

  20. Ji H, Frenzel J, Qi Z, Wang X, Zhao C, Zhang Z, Eggeler G (2010) An ultrafine nanoporous bimetallic ag-Pd alloy with superior catalytic activity. Cryst Eng Comm 12:4059–4062

    Article  CAS  Google Scholar 

  21. Zhang M, Li MP, Yin T, Zhang T (2016) Fabrication of nanoporous bi-metallic ag–Pd alloys with open pores. Mater Lett 162:273–276

    Article  CAS  Google Scholar 

  22. Zuo J, Song Y, Zhanbo S (2018) Bimetallic nanoporous Pd–ag prepared by dealloying with polyvinylpyrrolidone and their electrocatalytic properties. Nanotechnology 29:485401

    Article  CAS  Google Scholar 

  23. Qiu HJ, Shen X, Wang JQ, Hirata A, Fujita T, Wang Y, Chen MW (2015) Aligned nanoporous Pt–cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal 5:3779–3785

    Article  CAS  Google Scholar 

  24. Gao JJ, Zhou GP, Qiu HJ, Wang Y, Wang JQ (2016) Dealloying monolithic Pt-cu alloy to wire-like nanoporous structure for electrocatalysis and electrochemical sensing. Corros Sci 108:194–199

    Article  CAS  Google Scholar 

  25. Zhou Q, Qi L, Yang H, Xu C (2018) Hierarchical nanoporous platinum-copper alloy nanoflowers as highly active catalysts for the hydrolytic dehydrogenation of ammonia borane. J Colloid Interface Sci 513:258–265

    Article  CAS  PubMed  Google Scholar 

  26. Duan H, Hao Q, Xu C (2015) Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction. J Power Sources 280:483–490

    Article  CAS  Google Scholar 

  27. Li X, Qiu HJ, Wang JQ, Wang Y (2016) Corrosion of ternary Mn-cu-au to nanoporous au-cu with widely tuned au/cu ratio for electrocatalyst. Corros Sci 106:55–60

    Article  CAS  Google Scholar 

  28. Zhou Q, Xu C (2017) Nanoporous PtCo/Co3O4 composites with high catalytic activities toward hydrolytic dehydrogenation of ammonia borane. J Colloid Interface Sci 508:542–550

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Q, Xu C (2016) Nanoporous PtRu alloys with unique catalytic activity toward hydrolytic dehydrogenation of ammonia borane. Chem-Asian J 11:705–712

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Wang Z, Zhang J, Zhang C, Gao H, Niu J, Zhang Z (2018) A self-supported nanoporous PtGa film as an efficient multifunctional electrocatalyst for energy conversion. Nanoscale 10:17070–17079

    Article  CAS  PubMed  Google Scholar 

  31. Chen D, Tian C, Li X, Li Z, Han Z, Zhai C, Quan Y, Cui R, Zhang G (2018) Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene. Microchim Acta 185:98

    Article  CAS  Google Scholar 

  32. Han B, Xu C (2014) Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction. Int J Hydrog Energy 39:18247–18255

    Article  CAS  Google Scholar 

  33. Wang J, Wang Z, Zhao D, Xu C (2014) Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal Chim Acta 832:34–43

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Zhou H, Fan D, Zhao D, Xu C (2015) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182:1–7

    Article  CAS  Google Scholar 

  35. Zhang J, Lv L, Gao H, Bai Q, Zhang C, Zhang Z (2017) Electrochemical actuation behaviors and mechanisms of bulk nanoporous Ni-Pd alloy. Scr Mater 137:73–77

    Article  CAS  Google Scholar 

  36. Yang H, Wang Z, Li C, Xu C (2017) Nanoporous PdCu alloy as an excellent electrochemical sensor for H2O2 and glucose detection. J Colloid Interface Sci 491:321–328

    Article  CAS  PubMed  Google Scholar 

  37. Xu C, Liu A, Qiu H, Liu Y (2011) Nanoporous PdCu alloy with enhanced electrocatalytic performance. Electrochem Commun 13:766–769

    Article  CAS  Google Scholar 

  38. Xu C, Liu Y, Wang J, Geng H, Qiu H (2012) Nanoporous PdCu alloy for formic acid electro-oxidation. J Power Sources 199:124–131

    Article  CAS  Google Scholar 

  39. Duan H, Xu C (2016) Nanoporous PdCr alloys as highly active electrocatalysts for oxygen reduction reaction. Phys Chem Chem Phys 18:4166–4173

    Article  CAS  PubMed  Google Scholar 

  40. Duan H, Xu C (2016) Nanoporous PdZr surface alloy as highly active non–platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol–tolerance. J Power Sources 316:106–113

    Article  CAS  Google Scholar 

  41. Chen J, Li Y, Lu N, Tian C, Han Z, Zhang L, Fang Y, Qian B, Jiang X, Cui R (2018) Nanoporous PdCe bimetallic nanocubes with high catalytic activity towards ethanol electro-oxidation and the oxygen reduction reaction in alkaline media. J Mater Chem A 6:23560–23568

    Article  CAS  Google Scholar 

  42. Chen X, Si C, Wang Y, Ding Y, Zhang Z (2016) Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Res 9:1831–1843

    Article  CAS  Google Scholar 

  43. Si C, Zhang J, Wang Y, Ma W, Gao H, Lv L, Zhang Z (2017) Nanoporous platinum/(Mn,Al)3O4 nanosheet nanocomposites with synergistically enhanced ultrahigh oxygen reduction activity and excellent methanol tolerance. ACS Appl Mater Interfaces 9:2485–2494

    Article  CAS  PubMed  Google Scholar 

  44. Sun J, Yan X, Zhao B, Liu L, Gao Y, Zhang Z (2016) Modulation of compositions and electrocatalytic activities of quaternary nanoporous Pt-based alloys via controllable dealloying. Int J Hydrog Energy 41:9476–9489

    Article  CAS  Google Scholar 

  45. Chen X, Si C, Gao Y, Frenzel J, Sun J, Eggeler G, Zhang Z (2015) Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction. J Power Sources 273:324–332

    Article  CAS  Google Scholar 

  46. Chen X, Wang H, Wang Y, Bai Q, Gao Y, Zhang Z (2015) Synthesis and electrocatalytic performance of multi-component nanoporous PtRuCuW alloy for direct methanol fuel cells. Catalysts 5:1003–1015

    Article  CAS  Google Scholar 

  47. Kloke A, Von SF, Zengerle R, Kerzenmacher S (2011) Strategies for the fabrication of porous platinum electrodes. Adv Mater 23:4976–5008

    Article  CAS  PubMed  Google Scholar 

  48. Chen LY, Chen N, Hou Y, Wang ZC, Lv SH, Fujita T, Jiang JH, Hirata A, Chen MW (2013) Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/au ratio for direct ethanol fuel cells. ACS Catal 3:1220–1230

    Article  CAS  Google Scholar 

  49. Wang J, Zhao D, Xu C (2016) Nonenzymatic electrochemical sensor for glucose based on nanoporous platinum-gold alloy. J Nanosci Nanotechnol 16:7145–7150

    Article  CAS  Google Scholar 

  50. Ou S, Ma D, Li Y, Yubuta K, Tan Z, Wang Y, Zhang W (2017) Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy. J Alloys Compd 706:215–219

    Article  CAS  Google Scholar 

  51. Zeng YQ, Yang SC, Xiang H, Dong X, Chen L, Chen M, Inoue A, Zhang X, Jiang J (2015) Multicomponent nanoporous metals prepared by dealloying Pd80−xNixP20 metallic glasses. Intermetallics 61:66–71

    Article  CAS  Google Scholar 

  52. Wang S, Zhang C, Li H, Liu L (2017) Enhanced electro-catalytic performance of Pd-based amorphous nanoporous structure synthesized by dealloying Pd32Ni48P20 metallic glass. Intermetallics 87:6–12

    Article  CAS  Google Scholar 

  53. Gao P, Ye X, Zhu Z, Wu Y, Volinsky AA, Qiao L, Su Y (2016) Defects evolution of nanoporous AuAg(Pt) during thermal coarsening. Scr Mater 119:51–54

    Article  CAS  Google Scholar 

  54. Vega AA, Newman RC (2016) Methanol electro-oxidation on nanoporous metals formed by dealloying of ag–au–Pt alloys. J Appl Electrochem 46:995–1010

    Article  CAS  Google Scholar 

  55. Chiu HY, Liu YC, Hsieh YT, Sun IW (2017) Some aspects on the one-pot fabrication of nanoporous Pd–au surface films by electrochemical alloying/dealloying of (Pd–au)–Zn from a chlorozincate ionic liquid. ACS Omega 2:4911–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hsieh LY, Wang PK, Chang CC, Sun IW (2017) Electrodeposition and dissolution of Zn on PdAg foil in a chlorozincate ionic liquid to fabricate micro-nanostructured PdAgZn alloy films for electrocatalysis. J Electrochem Soc 164:D752–D757

    Article  CAS  Google Scholar 

  57. Li C, Iqbal M, Lin J, Luo X, Jiang B, Malgras V, Wu KC, Kim J, Yamauchi Y (2018) Electrochemical deposition: an advanced approach for templated synthesis of nanoporous metal architectures. Acc Chem Res 51:1764–1773

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Goebl J, Yin Y (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42:2610–2653

    Article  CAS  PubMed  Google Scholar 

  59. Qiu X, Dai Y, Zhu X, Zhang H, Wu P, Tang Y, Wei S (2016) Template-engaged synthesis of hollow porous platinum–palladium alloy nanospheres for efficient methanol electro-oxidation. J Power Sources 302:195–201

    Article  CAS  Google Scholar 

  60. Assaud L, Monyoncho E, Pitzschel K, Allagui A, Petit M, Hanbücken M, Baranova E, Santinacci L (2014) 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid. Beilstein J Nanotech 5:162–172

    Article  CAS  Google Scholar 

  61. Nguyen TNA, Fedotova J, Kasiuk J, Bayev V, Kupreeva O, Lazarouk S, Manh DH, Vu DL, Chung S, Åkerman J, Altynov V, Maximenko A (2018) Effect of flattened surface morphology of anodized aluminum oxide templates on the magnetic properties of nanoporous co/Pt and co/Pd thin multilayered films. Appl Surf Sci 427:649–655

    Article  CAS  Google Scholar 

  62. Fang J, Zhang L, Li J, Lu L, Ma C, Cheng S, Li Z, Xiong Q, You H (2018) A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures. Nat Commun 9:521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhao J, Zhou Y, Qin L, Zhao M (2018) Synthesis of Pt-co micro/nanoporous array with high activity for methanol electrooxidation. Mater Lett 216:166–169

    Article  CAS  Google Scholar 

  64. Kang Y, Jiang B, Alothman ZA, Badjah AY, Naushad M, Habila M, Wabaidur S, Henzie J, Li H, Yamauchi Y (2019) Mesoporous PtCu alloy nanoparticles with tunable compositions and particles sizes using diblock copolymer micelle templates. Chem Eur J 25:343–348

    Article  CAS  PubMed  Google Scholar 

  65. Coyle VE, Oppedisano DKJ, Jones LA, Kandjani AE, Sabri YM, Bhargava SK (2016) Hydrogen bubble templated growth of honeycomb-like au-Pt alloy films for non-enzymatic glucose sensing. J Electrochem Soc 163:B689–B695

    Article  CAS  Google Scholar 

  66. Rezaei B, Havakeshian E, Ensafi AA (2016) Electrocatalytic activity of bimetallic Pd-au nanostructure supported on nanoporous stainless steel surface using galvanic replacement reaction toward the glycerol oxidation in alkaline media. J Electroanal Chem 782:108–116

    Article  CAS  Google Scholar 

  67. Thanh TD, Balamurugan J, Tuan NT, Jeong H, Lee SH, Kim NH, Lee JH (2017) Enhanced electrocatalytic performance of an ultrafine AuPt nanoalloy framework embedded in graphene towards epinephrine sensing. Biosens Bioelectron 89:750–757

    Article  CAS  PubMed  Google Scholar 

  68. Li C, Eid K, Wang H, Deng Y, Lu S, Li X, Wang L, Gu H (2018) One-pot synthesis of bimetallic PdCu nanoframes as efficient catalyst for methanol oxidation reaction. New J Chem 42:798–801

    Article  CAS  Google Scholar 

  69. Adams BD, Asmussen RM, Ostrom CK, Chen A (2014) Synthesis and comparative study of nanoporous palladium-based bimetallic catalysts for formic acid oxidation. J Phys Chem C 118:29903–29910

    Article  CAS  Google Scholar 

  70. Harumoto T, Tamura Y, Ishiguro T (2015) Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film. AIP Adv 5:017146

    Article  CAS  Google Scholar 

  71. Chowdhury SR, Mukherjee P, Bhattachrya SK (2016) Palladium and palladium–copper alloy nano particles as superior catalyst for electrochemical oxidation of methanol for fuel cell applications. Int J Hydrog Energy 41:17072–17083

    Article  CAS  Google Scholar 

  72. Strukova GK, Strukov GV, Egorov SV, Rossolenko AA, Matveyev DV, Stolyarov VS, Vitkalov SA (2015) Interaction of 3D mesostructures composed of Pd-Ni alloy nanowires with low-temperature oxygen plasma. Mater Lett 203:68–72

    Article  CAS  Google Scholar 

  73. Zhang X, Guan P, Malic L, Trudeau M, Rosei F, Veres T (2015) Nanoporous twinned PtPd with highly catalytic activity and stability. J Mater Chem A 3:2050–2056

    Article  CAS  Google Scholar 

  74. Tavakkoli N, Soltani N, Khorshidi E (2015) Fabrication of Ru–Pd bimetallic monolayer on nanoporous gold film electrode with excellent electrocatalytic performance towards captopril oxidation. Electrochim Acta 164:1–11

    Article  CAS  Google Scholar 

  75. Li C, Wang H, Li Y, Yu H, Yin S, Xue H, Li X, Xu Y, Wang L (2018) Tri-metallic PtPdAu mesoporous nanoelectrocatalysts. Nanotechnology 29:255404

    Article  PubMed  CAS  Google Scholar 

  76. Song P, Mei LP, Wang AJ, Fang KM, Feng JJ (2016) One-pot surfactant-free synthesis of porous PtAu alloyed nanoflowers with enhanced electrocatalytic activity for ethanol oxidation and oxygen reduction reactions. Int J Hydrog Energy 41:1645–1653

    Article  CAS  Google Scholar 

  77. Song P, He LL, Wang AJ, Mei LP, Zhong SX, Chen JR, Feng JJ (2015) Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nanoflowers with improved catalytic activity. J Mater Chem A 3:5321–5327

    Article  CAS  Google Scholar 

  78. Ying J, Jiang G, Cano ZP, Ma Z, Chen Z (2018) Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Appl Catal B-Environ 236:359–367

    Article  CAS  Google Scholar 

  79. Zhang G, Yang Z, Zhang W, Wang Y (2016) Facile synthesis of graphene nanoplate-supported porous Pt–cu alloys with high electrocatalytic properties for methanol oxidation. J Mater Chem A 4:3316–3323

    Article  CAS  Google Scholar 

  80. Mandal K, Bhattacharjee D, Dasgupta S (2015) Synthesis of nanoporous PdAg nanoalloy for hydrogen generation from formic acid at room temperature. Int J Hydrog Energy 40:4786–4793

    Article  CAS  Google Scholar 

  81. Zhu C, Wen D, Oschatz M, Holzschuh M, Liu W, Herrmann AK, Simon F, Kaskel S, Eychmüller A (2015) Kinetically controlled synthesis of PdNi bimetallic porous nanostructures with enhanced electrocatalytic activity. Small 11:1430–1434

    Article  CAS  PubMed  Google Scholar 

  82. Fu S, Zhu C, Du D, Lin Y (2016) Enhanced electrocatalytic activities of PtCuCoNi three-dimensional nanoporous quaternary alloys for oxygen reduction and methanol oxidation reactions. ACS Appl Mater Interfaces 8:6110–6116

    Article  CAS  PubMed  Google Scholar 

  83. Liu H, Koenigsmann C, Adzic RR, Wong SS (2014) Probing ultrathin one-dimensional Pd-Ni nanostructures as oxygen reduction reaction catalysts. ACS Catal 4:2544–2555

    Article  CAS  Google Scholar 

  84. Zhu C, Du D, Eychmüller A, Lin Y (2015) Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem Rev 115:8896–8943

    Article  CAS  PubMed  Google Scholar 

  85. Jiang B, Li C, Tang J, Takei T, Kim JH, Ide Y, Henzie J, Tominaka S, Yamauchi Y (2016) Tunable-sized polymeric micelles and their assembly for the preparation of large mesoporous platinum nanoparticles. Angew Chem Int Ed 55:10037–10041

    Article  CAS  Google Scholar 

  86. Lu S, Eid K, Ge D, Guo J, Wang L, Wang H, Gu H (2017) One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 9:1033–1039

    Article  CAS  PubMed  Google Scholar 

  87. Liu H, Adzic RR, Wong SS (2015) Multifunctional ultrathin PdxCu1–x and Pt∼PdxCu1–x one-dimensional nanowire motifs for various small molecule oxidation reactions. ACS Appl Mater Interfaces 7:26145–26157

    Article  CAS  PubMed  Google Scholar 

  88. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  CAS  PubMed  Google Scholar 

  89. Kua J, Goddard WA (1999) Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): application to direct methanol fuel cells. J Am Chem Soc 121:10928–10941

    Article  CAS  Google Scholar 

  90. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  CAS  Google Scholar 

  91. Wang JX, Ma C, Choi Y, Su D, Zhu Y, Liu P, Si R, Vukmirovic MB, Zhang Y, Adzic RR (2011) Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J Am Chem Soc 133:13551–13557

    Article  CAS  PubMed  Google Scholar 

  92. Wu K, Zhang Q, Sun D, Zhu X, Chen Y, Lu T, Tang Y (2015) Graphene-supported Pd–Pt alloy nanoflowers: in situ growth and their enhanced electrocatalysis towards methanol oxidation. Int J Hydrog Energy 40:6530–6537

    Article  CAS  Google Scholar 

  93. Yang Y, Cao Y, Yang L, Huang Z, Long N (2018) Synthesis of Pt–Pd bimetallic porous nanostructures as electrocatalysts for the methanol oxidation reaction. Nanomaterials 8:208

    Article  PubMed Central  CAS  Google Scholar 

  94. Xie XW, Lv JJ, Liu L, Wang AJ, Feng JJ, Xu QQ (2017) Amino acid-assisted fabrication of uniform dendrite-like PtAu porous nanoclusters as highly efficient electrocatalyst for methanol oxidation and oxygen reduction reactions. Int J Hydrog Energy 42:2104–2115

    Article  CAS  Google Scholar 

  95. Gan YL, Yang Y, Du JJ, Zhang RH, Dai ZX, Zhou XW (2015) Studies on the synthesis, dealloying, and electrocatalytic properties of CoPd nanocatalysts. J Solid State Electrochem 19:1799–1805

    Article  CAS  Google Scholar 

  96. Xu W, Zhu S, Li Z, Cui Z, Yang X (2014) Preparation of nanoporous Pd/CuO by dealloying and their electrocatalysis for methanol in alkaline condition. J Electrochem Soc 161:F1474–F1480

    Article  CAS  Google Scholar 

  97. Niu M, Xu W, Zhu S, Liang Y, Cui Z, Yang X, Inoue A (2017) Synthesis of nanoporous CuO/TiO2/Pd-NiO composite catalysts by chemical dealloying and their performance for methanol and ethanol electro-oxidation. J Power Sources 362:10–19

    Article  CAS  Google Scholar 

  98. Sun J, Shi J, Xu J, Chen X, Zhang Z, Peng Z (2015) Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum–copper alloy: experiment and density functional theory calculation. J Power Sources 279:334–344

    Article  CAS  Google Scholar 

  99. Qiu P, Lian S, Yang G, Yang S (2017) Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Res 10:1064–1077

    Article  CAS  Google Scholar 

  100. Wang Y, Yin K, Zhang J, Si C, Chen X, Lv L, Ma W, Gao H, Zhang Z (2016) A nanoporous PtCuTi alloy with a low Pt content and greatly enhanced electrocatalytic performance towards methanol oxidation and oxygen reduction. J Mater Chem A 4:14657–14668

    Article  CAS  Google Scholar 

  101. Sheng J, Kang J, Ye H, Xie J, Zhao B, Fu XZ, Yu Y, Sun R, Wong C-P (2018) Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. J Mater Chem A 6:3906–3912

    Article  CAS  Google Scholar 

  102. Jiang B, Li C, Malgras V, Yamauchi Y (2015) Synthesis of ternary PtPdCu spheres with three-dimensional nanoporous architectures toward superior electrocatalysts. J Mater Chem A 3:18053–18058

    Article  CAS  Google Scholar 

  103. Bi C, Feng C, Miao T, Song Y, Wang D, Xia H (2015) Understanding the effect of ultrathin AuPd alloy shells of irregularly shaped au@AuPd nanoparticles with high-index facets on enhanced performance of ethanol oxidation. Nanoscale 7:20105–20116

    Article  CAS  PubMed  Google Scholar 

  104. del Rosario JAD, Ocon JD, Jeon H, Yi Y, Lee JK, Lee J (2014) Enhancing role of nickel in the nickel–palladium bilayer for electrocatalytic oxidation of ethanol in alkaline media. J Phys Chem C 118:22473–22478

    Article  CAS  Google Scholar 

  105. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89

    Article  CAS  Google Scholar 

  106. Zhang J, Chen M, Li H, Li Y, Ye J, Cao Z, Fang M, Kuang Q, Zheng J, Xie Z (2018) Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells. Nano Energy 44:127–134

    Article  CAS  Google Scholar 

  107. Cuesta A, Cabello G, Gutiérrez C, Osawa M (2011) Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes. Phys Chem Chem Phys 13:20091–20095

    Article  CAS  PubMed  Google Scholar 

  108. Domínguez C, Pérez-Alonso FJ, Salam MA, Fuente JLGDL, Al-Thabaiti SA, Basahel SN, Peña MA, Fierro JLG, Rojas S (2014) Effect of transition metal (M: Fe, co or Mn) for the oxygen reduction reaction with non-precious metal catalysts in acid medium. Int J Hydrog Energy 39:5309–5318

    Article  CAS  Google Scholar 

  109. Saikawa K, Nakamura M, Hoshi N (2018) Structural effects on the enhancement of ORR activity on Pt single-crystal electrodes modified with alkylamines. Electrochem Commun 87:5–8

    Article  CAS  Google Scholar 

  110. Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C (2017) A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 5:1808–1825

    Article  CAS  Google Scholar 

  111. Wang Y, Huang W, Si C, Zhang J, Yan X, Jin C, Ding Y, Zhang Z (2016) Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions. Nano Res 9(1):3781–3794

    Article  CAS  Google Scholar 

  112. Son J, Cho S, Lee C, Lee Y, Shim JH (2014) Spongelike nanoporous Pd and Pd/au structures: facile synthesis and enhanced electrocatalytic activity. Langmuir 30:3579–3588

    Article  CAS  PubMed  Google Scholar 

  113. Nguyen ATN, Shim JH (2018) Seedless, one-step synthesis of porous Pt-Pd nanoflowers for electroreduction of oxygen in acidic medium. Appl Surf Sci 458:910–916

    Article  CAS  Google Scholar 

  114. Li J, Yin HM, Li XB, Okunishi E, Shen YL, He J, Tang ZK, Wang WX, Yücelen E, Li C, Gong Y, Gu L, Miao S, Liu LM, Luo J, Ding Y (2017) Surface evolution of a Pt-Pd-au electrocatalyst for stable oxygen reduction. Nat Energy 2:17111

    Article  CAS  Google Scholar 

  115. Nguyen ATN, Shim JH (2018) Facile one-step synthesis of Ir-Pd bimetallic alloy networks as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions. J Electroanal Chem 827:120–127

    Article  CAS  Google Scholar 

  116. Yao RQ, Han LP, Lang XY, Cheng T, Wen Z, Liu G, Jiang Q (2018) Nanoporous (Pt1-xCox)3Al intermetallic compound as a high-performance catalyst for oxygen reduction reaction. Int J Hydrog Energy 43:19947–19954

    Article  CAS  Google Scholar 

  117. Cheng T, Lang XY, Han GF, Yao RQ, Wen Z, Jiang Q (2016) Nanoporous (Pt1−xFex)3Al intermetallic compounds for greatly enhanced oxygen electroreduction catalysis. J Mater Chem A 4:18878–18884

    Article  CAS  Google Scholar 

  118. Tran QC, An H, Ha H, Nguyen VT, Quang ND, Kim HY, Choi H-S (2018) Robust graphene-wrapped PtNi nanosponge for enhanced oxygen reduction reaction performance. J Mater Chem A 6:8259–8264

    Article  CAS  Google Scholar 

  119. Gatti R, Morigi R (2017) 1,4-Anthraquinone: a new useful pre-column reagent for the determination of N-acetylcysteine and captopril in pharmaceuticals by high performance liquid chromatography. J Pharm Biomed Anal 143:299–304

    Article  CAS  PubMed  Google Scholar 

  120. Lu L (2018) Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection. Biosens Bioelectron 110:180–192

    Article  CAS  PubMed  Google Scholar 

  121. Yan L, Brouzgou A, Meng Y, Xiao M, Tsiakaras P, Song S (2014) Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Appl Catal, B 150-151:268–274

    Article  CAS  Google Scholar 

  122. Eid K, Ahmad YH, AlQaradawi SY, Allam NK (2017) Rational design of porous binary Pt-based nanodendrites as efficient catalysts for direct glucose fuel cells over a wide pH range. Catal Sci Technol 7:2819–2827

    Article  CAS  Google Scholar 

  123. Wang R, Liang X, Liu H, Cui L, Zhang X, Liu C (2018) Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles. Microchim Acta 185:339

    Article  CAS  Google Scholar 

  124. Zhao D, Yu G, Tian K, Xu C (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82:119–126

    Article  CAS  PubMed  Google Scholar 

  125. Yang H, Zhao J, Qiu M, Sun P, Han D, Niu L, Cui G (2019) Hierarchical bi-continuous Pt decorated nanoporous au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing. Biosens Bioelectron 124-125:191–198

    Article  CAS  PubMed  Google Scholar 

  126. Hou Y, Sheng K, Lu Y, Ma C, Liu W, Men X, Xu L, Yin S, Dong B, Bai X, Song H (2018) Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Microchim Acta 185:397

    Article  CAS  Google Scholar 

  127. Wierzbicka E, Sulka GD (2016) Nanoporous spongelike au–ag films for electrochemical epinephrine sensing. J Electroanal Chem 762:43–50

    Article  CAS  Google Scholar 

  128. Wang J, Zhou H, Fan D, Zhao D, Xu C (2015) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182:1055–1061

    Article  CAS  Google Scholar 

  129. Nasirizadeh N, Shekari Z, Nazari A, Tabatabaee M (2016) Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples. J Food Drug Anal 24:72–82

    Article  CAS  PubMed  Google Scholar 

  130. Li Y, Song H, Zhang L, Zuo P, Ye BC, Yao J, Chen W (2016) Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens Bioelectron 78:308–314

    Article  CAS  PubMed  Google Scholar 

  131. Su-Jin K, Kyung CY, Chongmok L, Myung Hwa K, Youngmi L (2016) Real-time direct electrochemical sensing of ascorbic acid over rat liver tissues using RuO2 nanowires on electrospun TiO2 nanofibers. Biosens Bioelectron 77:1144–1152

    Article  CAS  Google Scholar 

  132. Abellán-Llobregat A, Jeerapan I, Bandodkar A, Vidal L, Canals A, Wang J, Morallón E (2017) A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens Bioelectron 91:885–891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Berecek KH, Brody MJ (1982) Evidence for a neurotransmitter role for epinephrine derived from the adrenal medulla. Am J Phys 242:593–601

    Google Scholar 

  134. Struthers AD, Reid JL, Whitesmith R, Rodger JC (1983) Effect of intravenous adrenaline on electrocardiogram, blood pressure, and serum potassium. Brit Heart J 49:90–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao Y, Zhao S, Huang J, Ye F (2011) Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta 85:2650–2654

    Article  CAS  PubMed  Google Scholar 

  136. Sriram G, Bhat MP, Patil P, Uthappa UT, Jung HY, Altalhi T, Kumeria T, Aminabhavi TM, Pai RK, Madhuprasad (2017) Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: a review. TrAC Trends Anal Chem 93:212–227

    Article  CAS  Google Scholar 

  137. Lu L (2019) Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid. Sensors Actuators B Chem 281:182–190

    Article  CAS  Google Scholar 

  138. Li SJ, Zhao GY, Zhang RX, Hou YL, Liu L (2013) A sensitive and selective nitrite sensor based on a glassy carbon;electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180:821–827

    Article  CAS  Google Scholar 

  139. Luo K, Nie F, Yan Y, Wang S, Zheng X, Song Z (2014) Study of captopril pharmacokinetics in rabbit blood with microdialysis based on online generated au nanoclusters and pepsin-captopril interaction in luminol chemiluminescence. RSC Adv 4:61465–61475

    Article  CAS  Google Scholar 

  140. Abbasi-Ahd A, Shokoufi N, Kargosha K (2017) Headspace single-drop microextraction coupled to microchip-photothermal lens microscopy for highly sensitive determination of captopril in human serum and pharmaceuticals. Microchim Acta 184:2403–2409

    Article  CAS  Google Scholar 

  141. Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q (2018) New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 47:8766–8803

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Joint Found with Universities and Scientific Research Institution (ZR2018LB022), A Project of Shandong Province Higher Educational Science and Technology Program (J18KA097) and Special Project of International Cooperative Research (QLUTGJHZ2018015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Lu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L. Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing. Microchim Acta 186, 664 (2019). https://doi.org/10.1007/s00604-019-3772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3772-3

Keywords

Navigation