Skip to main content
Log in

Voltammetric simultaneous quantification of p-nitrophenol and hydrazine by using magnetic spinel FeCo2O4 nanosheets on reduced graphene oxide layers modified with curcumin-stabilized silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensor based on a screen-printed carbon electrode loaded with curcumin-stabilized silver nanoparticle-coated reduced graphene oxide magnetic spinel (FeCo2O4) nanosheets was constructed. The electrocatalytic activity of the electrode enables sensitive simultaneous quantification of hydrazine and p-nitrophenol. The respective working potentials typically are at +0.15 V for hydrazine and at −0.75 V for p-nitrophenol (both vs. pseudo Ag/AgCl), and the detection limits are 23 nM and 18 nM (at S/N = 3). Good selectivity, repeatability, reproducibility and storage stability are shown. The sensor was used to analyze spiked samples of river water and industrial wastewater.

Schematic of an electrochemical sensor for simultaneous quantification of hydrazine and 4-nitrophenol in various natural and wastewater samples. The electrocatalyst in this sensor is composed of graphene oxide nanosheets modified with a magnetic spinel of type FeCo2O4 and os curcumin-stabilized silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao Z, Sun Y, Li P, Zhang W, Lian K, Chen Y, Hu J (2016) Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine. Talanta 158:283–291

    Article  CAS  Google Scholar 

  2. Yi Y, Zhu G, Wu X, Wang K (2016) Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode. Biosens Bioelectron 77(15):353–358

    Article  CAS  Google Scholar 

  3. Gupta R, Rastogi PK, Ganesan V, Kumar Yadav D, Sonkar PK (2017) Gold nanoparticles decorated mesoporous silica microspheres: a proficient electrochemical sensing scaffold for hydrazine and nitrobenzene. Sens Actuator B-Chem 239:970–978

    Article  CAS  Google Scholar 

  4. Karuppiah C, Palanisamy S, Chen SM, Emmanuel R, Ali MA, Muthukrishnan P, Prakash P, Al-Hemaid FMA (2014) Green biosynthesis of silver nanoparticles and nanomolar detection of p-nitrophenol. J Solid State Electrochem 18(7):1847–1854

    Article  CAS  Google Scholar 

  5. Guo X, Zhou H, Fan T, Zhang D (2015) Electrochemical detection of p-nitrophenol on surface imprinted gold with lamellar-ridge architecture. Sens Actuator B-Chem 220:33–39

    Article  CAS  Google Scholar 

  6. Tang YY, Kao CL, Chen PY (2012) Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite. Anal Chim Acta 711:32–39

    Article  CAS  Google Scholar 

  7. Gu X, Camden JP (2015) Surface-enhanced Raman spectroscopy-based approach for ultrasensitive and selective detection of hydrazine. Anal Chem 87(13):6460–6464

    Article  CAS  Google Scholar 

  8. Nistor C, Oubi A, Marco MP, Barceló D, Emnéus J (2001) Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal Chim Acta 426:185–195

    Article  CAS  Google Scholar 

  9. Safavi A, Karimi MA (2002) Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta 58(4):785–792

    Article  CAS  Google Scholar 

  10. An Z, Li P, Zhang X, Liu L (2013) Simultaneous determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine in rat plasma by LC–MS/MS. J Liq Chromatogr Relat Technol 37(9):1212–1225

    Article  Google Scholar 

  11. Santhiago M, Henry CS, Kubota LT (2014) Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim Acta 130:771–777

    Article  CAS  Google Scholar 

  12. Kocak S, Aslıs B (2014) Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode. Sens Actuator B-Chem 196:610–618

    Article  CAS  Google Scholar 

  13. Koçak S, Aslışen B, Koçak CC (2015) Determination of hydrazine at a platinum nanoparticle and Poly(Bromocresol Purple) modified carbon nanotube electrode. Anal.Lett.:990–1003

  14. Dai G, Xie J, Li C, Liu S (2017) Flower-like Co3O4/graphitic carbon nitride nanocomposite based electrochemical sensor and its highly sensitive electrocatalysis of hydrazine. J Alloys Compd 727(15):43–51

    Article  CAS  Google Scholar 

  15. Samanta S, Srivastava R (2016) CuCo2O4 based economical electrochemical sensor for the nanomolar detection of hydrazine and metol. J Electroanal Chem 777:48–57

    Article  CAS  Google Scholar 

  16. Zhang D, Zhang G, Zhang L (2017) Multi-shelled FeCo2O4 hollow porous microspheres/CCFs magnetic hybrid and its dual-functional catalytic performance. Chem Eng J 330(15):792–803

    Article  CAS  Google Scholar 

  17. Yan W, Yang Z, Bian W, Yang R (2015) FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction. Carbon 92:74–83

    Article  CAS  Google Scholar 

  18. Zhou R, Zhao J, Shen N, Ma T, Su Y, Ren H (2018) Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo2O4 nanoparticles. Chemosphere 197:670–679

    Article  CAS  Google Scholar 

  19. Liu J, Nan Y, Chang X, Li X, Fang Y, Liu Y, Tang Y, Wang X, Li R, Ma J (2017) Hierarchical nitrogen-enriched porous carbon materials derived from Schiff-base networks supported FeCo2O4 nanoparticles for efficient water oxidation. Int J Hydrog Energy 42:10802–10812

    Article  CAS  Google Scholar 

  20. Zheng L, Jf S (2009) Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sens Actuator B-Chem 135(2):650–655

    Article  CAS  Google Scholar 

  21. Ragu S, Chen SM, Ranganathan P, Rwei SP (2016) Fabrication of a Novel Nickel-Curcumin/graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int J Electrochem Sci 11:9133–9144

    Article  CAS  Google Scholar 

  22. Dinesh B, Saraswathi R (2017) Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol. Sens Actuator B-Chem 253:502–512

    Article  CAS  Google Scholar 

  23. Chodankar NR, Dubal DP, Ji SH, Kim DH (2019) Highly efficient and stable negative electrode for asymmetric supercapacitors based on graphene/FeCo2O4 nanocomposite hybrid material. Electrochim Acta 295:195–203

    Article  CAS  Google Scholar 

  24. Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M (2018) Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B: Biointerfaces 171:398–405

    Article  CAS  Google Scholar 

  25. Dhanavel S, Revathy TA, Padmanaban A, Narayanan V, Stephen A (2018) Highly efficient catalytic reduction and electrochemical sensing of hazardous 4-nitrophenol using chitosan/rGO/palladium nanocomposite. J Mater Sci-Mater El 29(16):14093–14104

    Article  CAS  Google Scholar 

  26. Lui L, Zhang H, Mu Y, Yang J, Wang Y (2016) Porous iron cobaltate nanoneedles array on nickel foam as anode materials for Lithium-ion batteries with enhanced electrochemical performance. ACS Appl Mater Interfaces 8:1351–1359

    Article  Google Scholar 

  27. Bettini S, Pagano R, Valli L, Giancane G (2014) Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles. Nanoscale 6:10113–10117

    Article  CAS  Google Scholar 

  28. El-Khoury E, Ablad M, Kassafi ZG, Patra D (2015) Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity. Colloids Surf B: Biointerfaces 127:274–280

    Article  CAS  Google Scholar 

  29. Mohamed SG, Attia SY, Hassan HH (2017) Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous Mesoporous Mater 251:26–33

    Article  CAS  Google Scholar 

  30. Randviir EP (2018) A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim Acta 286:179–186

    Article  CAS  Google Scholar 

  31. Prathish KP, Barsan MM, Geng D, Sun X, Brett CMA (2013) Chemically modified graphene and nitrogen-doped graphene: electrochemical characterisation and sensing applications. Electrochim Acta 114:533–542

    Article  CAS  Google Scholar 

  32. Xu G, Zhang Z, Qi X, Ren X, Liu S, Chen Q, Huang Z, Zhong J (2018) Hydrothermally synthesized FeCo2O4 nanostructures: Structural manipulation for high-performance all solid-state supercapacitors. Ceram Int 44:120–127

    Article  CAS  Google Scholar 

  33. Mejri A, Mars A, Elfil H, Hamzaoui AH (2018) Graphene nanosheets modified with curcumin-decorated manganese dioxide for ultrasensitive potentiometric sensing of mercury(II), fluoride and cyanide. Microchim Acta 185(529):1–8

    CAS  Google Scholar 

  34. Gao F, Wang Q, Gao N, Yang Y, Cai F, Yamane M, Gao F, Tanaka H (2017) Hydroxyapatite/chemically reduced graphene oxide composite: Environment-friendly synthesis and high-performance electrochemical sensing for hydrazine. Biosens Bioelectron 97:238–245

    Article  CAS  Google Scholar 

  35. Zhu HY, Sigdel A, Zhang S, Su D, Xi Z, Li Q, Sun SH (2014) Core/shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angew Chem 126:12716–12720

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to thank the Tunisian Ministry of High Education and Scientific Research for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmoneim Mars.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejri, A., Mars, A., Elfil, H. et al. Voltammetric simultaneous quantification of p-nitrophenol and hydrazine by using magnetic spinel FeCo2O4 nanosheets on reduced graphene oxide layers modified with curcumin-stabilized silver nanoparticles. Microchim Acta 186, 561 (2019). https://doi.org/10.1007/s00604-019-3650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3650-z

Keywords

Navigation