Skip to main content
Log in

An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an immunosensor for the prostate specific antigen (PSA). It was obtained by modifying a glassy carbon electrode (GCE) first modified with gold nanoparticles and then with reduced graphene oxide that was decorated with gold nanoparticles. The AuNPs on reduced graphene oxide provide a suitable surface for attachment of antibodies. On binding of the antigen, the square wave voltammetric signal (measured by using hexacyanoferrate as a probe) reduced. This method has two logarithmically linear analytical ranges that extend from 25 to 55 fg.mL−1 and from 1 to 36 ng.mL−1, respectively. The lowest detection limit is 2 pg.mL−1. Electrochemical impedance spectroscopy was also carried out for PSA determination. EIS works in the 0.0018 to 41 ng.mL−1 concentration range and has an LOD of 60 pg.mL−1. This method was applied to the determination of PSA in (spiked) human serum samples. In order to survey the selectivity of immunosensor, determination of PSA was performed in human serum samples, and finally sensitivity and reproducibility were examined.

Facile label free immunosensor based on reduced graphene oxide decorated with gold nanoparticles for early diagnosis prostate cancer via ultrasensitive detection of PSA biomarker: application in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bok RA, Small EJ (2002) Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer 2(12):918

    Article  CAS  Google Scholar 

  2. Powers JL, Rippe KD, Imarhia K, Swift A, Scholten M, Islam N (2012) A direct, competitive enzyme-linked immunosorbent assay (ELISA) as a quantitative technique for small molecules. J Chem Educ 89(12):1587–1590

    Article  CAS  Google Scholar 

  3. Sonawane MD, Nimse SB, Song K-S, Kim T (2016) Detection, quantification, and profiling of PSA: current microarray technologies and future directions. RSC Adv 6(9):7599–7609

    Article  CAS  Google Scholar 

  4. Tardivo M, Toffoli V, Fracasso G, Borin D, Dal Zilio S, Colusso A, Carrato S, Scoles G, Meneghetti M, Colombatti M (2015) Parallel optical read-out of micromechanical pillars applied to prostate specific membrane antigen detection. Biosens Bioelectron 72:393–399

    Article  CAS  Google Scholar 

  5. Deng L, Chen H-Y, Xu J-J (2015) A novel electrochemiluminescence resonance energy transfer system for ultrasensitive detection of prostate-specific antigen. Electrochem Commun 59:56–59

    Article  CAS  Google Scholar 

  6. He Z, Gao N, Jin W (2003) Determination of tumor marker CA125 by capillary electrophoretic enzyme immunoassay with electrochemical detection. Anal Chim Acta 497(1–2):75–81

    Article  CAS  Google Scholar 

  7. Chuah K, Lai LM, Goon IY, Parker SG, Amal R, Gooding JJ (2012) Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as ‘dispersible electrodes’. Chem Commun 48(29):3503–3505

    Article  CAS  Google Scholar 

  8. Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184(9):3049–3067

    Article  CAS  Google Scholar 

  9. Fan H, Guo Z, Gao L, Zhang Y, Fan D, Ji G, Du B, Wei Q (2015) Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline–Au asymmetric multicomponent nanoparticles. Biosens Bioelectron 64:51–56

    Article  CAS  Google Scholar 

  10. Xu Z, Chen X, Dong S (2006) Electrochemical biosensors based on advanced bioimmobilization matrices. TrAC Trends Anal Chem 25(9):899–908

    Article  CAS  Google Scholar 

  11. Choudhary M, Kumar V, Singh A, Singh M, Kaur S, Reddy G, Pasricha R, Singh S, Arora K (2013) Graphene oxide based label free ultrasensitive immunosensor for lung cancer biomarker, hTERT. Journal of Biosensors & Bioelectronics 4(4):1–9

    Article  Google Scholar 

  12. Chu Y, Wang H, Ma H, Wu D, Du B, Wei Q (2016) Sandwich-type electrochemical immunosensor for ultrasensitive detection of prostate-specific antigen using palladium-doped cuprous oxide nanoparticles. RSC Adv 6(88):84698–84704

    Article  CAS  Google Scholar 

  13. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181(15–16):1999–2008

    Article  CAS  Google Scholar 

  14. Shoja Y, Rafati AA, Ghodsi J (2017) Enzymatic biosensor based on entrapment of D-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: analytical applications for D-alanine in human serum. Enzym Microb Technol 100:20–27

    Article  CAS  Google Scholar 

  15. Afraz A, Rafati AA, Najafi M (2014) Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng C 44:58–68

    Article  CAS  Google Scholar 

  16. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    Article  CAS  Google Scholar 

  17. Ma X, Qu Q, Zhao Y, Luo Z, Zhao Y, Ng KW, Zhao Y (2013) Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J Mater Chem B 1(47):6495–6500

    Article  CAS  Google Scholar 

  18. Turcheniuk K, Boukherroub R, Szunerits S (2015) Gold–graphene nanocomposites for sensing and biomedical applications. J Mater Chem B 3(21):4301–4324

    Article  CAS  Google Scholar 

  19. Guex LG, Sacchi B, Peuvot KF, Andersson RL, Pourrahimi AM, Ström V, Farris S, Olsson RT (2017) Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27):9562–9571

    Article  CAS  Google Scholar 

  20. Chng ELK, Pumera M (2013) The toxicity of graphene oxides: dependence on the oxidative methods used. Chem Eur J 19(25):8227–8235

    Article  CAS  Google Scholar 

  21. Hussain N, Gogoi A, Sarma RK, Sharma P, Barras A, Boukherroub R, Saikia R, Sengupta P, Das MR (2014) Reduced graphene oxide nanosheets decorated with au nanoparticles as an effective bactericide: investigation of biocompatibility and leakage of sugars and proteins. ChemPlusChem 79(12):1774–1784

    CAS  Google Scholar 

  22. Kim Y-K, Kim M-H, Min D-H (2011) Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun 47(11):3195–3197

    Article  CAS  Google Scholar 

  23. Wu L, Chu H, Koh W, Li E (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  Google Scholar 

  24. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  25. Kim YJ, Kim JW, Lee JE, Ryu JH, Kim J, Chang IS, Suh KD (2004) Synthesis and adsorption properties of gold nanoparticles within pores of surface-functional porous polymer microspheres. J Polym Sci A Polym Chem 42(22):5627–5635

    Article  CAS  Google Scholar 

  26. javad Assari M, Rezaee A, Rangkooy H (2015) Bone char surface modification by nano-gold coating for elemental mercury vapor removal. Appl Surf Sci 342:106–111

    Article  Google Scholar 

  27. Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20(4):743–748

    Article  CAS  Google Scholar 

  28. Xiong Z, Zhang LL, Ma J, Zhao X (2010) Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem Commun 46(33):6099–6101

    Article  CAS  Google Scholar 

  29. Zhang G, Liu Z, Fan L, Guo Y (2018) Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Microchim Acta 185(3):159

    Article  Google Scholar 

  30. Zhao J, Guo Z, Feng D, Guo J, Wang J, Zhang Y (2015) Simultaneous electrochemical immunosensing of alpha-fetoprotein and prostate specific antigen using a glassy carbon electrode modified with gold nanoparticle-coated silica nanospheres and decorated with azure a or ferrocenecarboxylic acid. Microchim Acta 182(15–16):2435–2442

    Article  CAS  Google Scholar 

  31. Çevik E, Bahar Ö, Şenel M, Abasıyanık MF (2016) Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers. Biosens Bioelectron 86:1074–1079

    Article  Google Scholar 

  32. Oliveira N, Costa-Rama E, Viswanathan S, Delerue-Matos C, Pereira L, Morais S (2018) Label-free Voltammetric Immunosensor for prostate specific antigen detection. Electroanalysis 30(11):2604–2611. https://doi.org/10.1002/elan.201800417

    Article  CAS  Google Scholar 

  33. Wang H, Zhang Y, Yu H, Wu D, Ma H, Li H, Du B, Wei Q (2013) Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Anal Biochem 434(1):123–127

    Article  CAS  Google Scholar 

  34. Li L, Xu J, Zheng X, Ma C, Song X, Ge S, Yu J, Yan M (2014) Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Biosens Bioelectron 61:76–82

    Article  CAS  Google Scholar 

  35. Akter R, Rahman MA, Rhee CK (2012) Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal Chem 84(15):6407–6415

    Article  CAS  Google Scholar 

  36. Ertürk G, Hedström M, Tümer MA, Denizli A, Mattiasson B (2015) Real-time prostate-specific antigen detection with prostate-specific antigen imprinted capacitive biosensors. Anal Chim Acta 891:120–129

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge Bu-Ali Sina University for the financial support from the Grant Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abbas Rafati.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assari, P., Rafati, A.A., Feizollahi, A. et al. An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles. Microchim Acta 186, 484 (2019). https://doi.org/10.1007/s00604-019-3565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3565-8

Keywords

Navigation