Skip to main content
Log in

Molecular beacon immobilized on graphene oxide for enzyme-free signal amplification in electrochemiluminescent determination of microRNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemiluminescence (ECL) based biosensor is described for determination of microRNAs in the A549 cell line. Firstly, graphene oxide (GO) is dripped onto a glassy carbon electrode surface to form an interface to which one end of the capture probe (with a stem-loop structure) can be anchored through π-interaction via dangling unpaired bases. The other end of the capture probe is directed away from the GO surface to make it stand upright. Target microRNAs can open the hairpin structure to form a double-stranded DNA-RNA structure. Two auxiliary probes, generating a hybridization chain reaction, are used to elongate the DNA duplex. Finally, doxorubicin-modified cadmium telluride quantum dot nanoparticles (Dox-CdTe QD) are intercalated into the base pairs of the hybrid duplexes to act as signalling molecules. The ECL signal of the Dox-CdTe QD increases proportionally with the concentration of microRNAs, specifically for microRNA-21. The assay covers a wide linear range (1 fM to 0.1 nM), has a low detection limit for microRNA-21 (1 fM), and is selective, reproducible, and stable.

An enzyme-free amplification electrochemiluminescent assay is described to quantitative detection of microRNA in the A549 cell line. Graphene oxide was used to immobilize capture probes obviating the special modification. Doxorubicin-modified cadmium telluride quantum dot nanoparticles are intercalated into the base pairs of the hybrid duplexes to act as signalling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221

    Article  CAS  Google Scholar 

  2. Engels BM, Hutvagner G (2006) Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25(46):6163–6169

    Article  CAS  Google Scholar 

  3. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    Article  CAS  Google Scholar 

  4. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32(22):e175

    Article  Google Scholar 

  5. Yu CY, Yin BC, Ye BC (2013) A universal real-time PCR assay for rapid quantification of microRNAs via the enhancement of base-stacking hybridization. Chem Commun 49(74):8247–8249

    Article  CAS  Google Scholar 

  6. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    Article  CAS  Google Scholar 

  7. Lu LP, Liu C, Kang TF, Miao WJ, Wang XY, Guo GS (2018) In situ enhanced electrochemiluminescence based on co-reactant self-generated for sensitive detection of microRNA. Sensors Actuators B (255):35–41

  8. Jiang L, Duan DM, Shen Y, Li J (2012) Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens Bioelectron 34(1):291–295

    Article  CAS  Google Scholar 

  9. Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128(43):14044–14046

    Article  CAS  Google Scholar 

  10. Heydari-Bafrooei E, Askari S (2017) Ultrasensitive aptasensing of lysozyme by exploiting the synergistic effect of gold nanoparticle-modified reduced graphene oxide and MWCNTs in a chitosan matrix. Microchim Acta 184:3405–3413

    Article  CAS  Google Scholar 

  11. Ensafi AA, Heydari-Bafrooei E, Dinari M, Mallakpour S (2014) Improved immobilization of DNA to graphite surfaces, using amino acid modified clays. J Mater Chem B 2:3022–3028

    Article  CAS  Google Scholar 

  12. Ensafi AA, Nasr-Esfahani P, Heydari-Bafrooei E, Rezaei B (2014) Redox targeting of DNA anchored to MWCNTs and TiO2 nanoparticles dispersed in poly dialyldimethylammonium chloride and chitosan. Colloids Surf B: Biointerfaces 121:99–105

    Article  CAS  Google Scholar 

  13. Heydari-Bafrooei E, Shamszadeh NS (2017) Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens Bioelectron 91:284–292

    Article  CAS  Google Scholar 

  14. Zhang R, Chen A, Yu Y, Chai Y, Zhuo Y, Yuan R (2018) Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Microchim Acta 185:432

    Article  Google Scholar 

  15. Jian Y, Wang H, Lan F, Liang L, Ren N, Liu H, Ge S, Yu J (2018) Electrochemiluminescence based detection of microRNA by applying an amplification strategy and hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II)tris(bipyridine). Microchim Acta 185:133

    Article  Google Scholar 

  16. Huang KJ, Liu YJ, Zhang JZ, Cao JT, Liu YM (2015) Aptamer/au nanoparticles/cobalt sulfide nanosheets biosensor for 17 beta-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Biosens Bioelectron 67:184–191

    Article  CAS  Google Scholar 

  17. Zhang P, Wu XY, Chai YQ, Yuan R (2014) An electrochemiluminescent microRNA biosensor based on hybridization chain reaction coupled with hemin as the signal enhancer. Analyst 139(11):2748–2753

    Article  CAS  Google Scholar 

  18. Erdem A, Muti M, Mese F, Eksin E (2014) Chitosan-ionic liquid modified single-use sensor for electrochemical monitoring of sequence-selective DNA hybridization. Colloids Surf B: Biointerfaces 114:261–268

    Article  CAS  Google Scholar 

  19. Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138

    Article  CAS  Google Scholar 

  20. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    Article  CAS  Google Scholar 

  21. Wu M, Kempaiah R, Huang PJJ, Maheshwari V, Liu JW (2011) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27(6):2731–2738

    Article  CAS  Google Scholar 

  22. Huang R, Liao YH, Zhou XM, Xing D (2015) Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection. Anal Chim Acta 888:162–172

    Article  CAS  Google Scholar 

  23. Agudelo D, Bourassa P, Berube G, Tajmir-Riahi HA (2014) Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol 66:144–150

    Article  CAS  Google Scholar 

  24. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285

    Article  CAS  Google Scholar 

  25. Yang XP, Lin J, Liao XL, Zong YY, Gao HH (2015) Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method. Mater Res Bull 66:169–175

    Article  CAS  Google Scholar 

  26. Li CX, Wang HY, Shen J, Tang B (2015) Cyclometalated iridium complex-based label-free Photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Anal Chem 87(8):4283–4291

    Article  CAS  Google Scholar 

  27. Liu T, Chen X, Hong CY, Xu XP, Yang HH (2014) Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures. Microchim Acta 181(7–8):731–736

    Article  CAS  Google Scholar 

  28. Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv 1(6):978–988

    Article  CAS  Google Scholar 

  29. Yan Z, Li Y, Zheng JB, Zhou M (2014) Electrogenerated chemiluminescence biosensing method for methyltransferase activity using tris(1, 10-phenanthroline) ruthenium-assembled graphene oxide. J Electroanal Chem 731:133–138

    Article  CAS  Google Scholar 

  30. Rafiee-Pour HA, Behpour M, Keshavarz M (2016) A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron 77:202–207

    Article  CAS  Google Scholar 

  31. Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Naderi-Manesh H (2016) An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron 77:99–106

    Article  CAS  Google Scholar 

  32. Xiong HT, Zheng XW (2017) Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Microchim Acta 184(6):1781–1789

    Article  CAS  Google Scholar 

  33. Zhang TT, Zhao HM, Fan GF, Li YX, Li L, Quan X (2016) Electrolytic exfoliation synthesis of boron doped graphene quantum dots: a new luminescent material for electrochemiluminescence detection of oncogene microRNA-20a. Electrochim Acta 190:1150–1158

    Article  CAS  Google Scholar 

  34. Park KW, Batule BS, Kang KS, Park KS, Park HG (2016) Rapid and ultrasensitive detection of microRNA by target-assisted isothermal exponential amplification coupled with poly (thymine)-templated fluorescent copper nanoparticles. Nanotechnology 27(42):425502

    Article  Google Scholar 

  35. Xu FZ, Luo L, Shi H, He XX, Lei YL, Tang JL, He DG, Qiao ZZ, Wang KM (2018) Label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy. Anal Chim Acta 1010:54–61

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21527808, 21475006) and Beijing municipal high level innovative team building program (IDHT 20180504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Lu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L., Lu, L. et al. Molecular beacon immobilized on graphene oxide for enzyme-free signal amplification in electrochemiluminescent determination of microRNA. Microchim Acta 186, 142 (2019). https://doi.org/10.1007/s00604-019-3252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3252-9

Keywords

Navigation