Skip to main content
Log in

Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An efficient coreaction accelerator scheme is introduced in an electrochemiluminescence (ECL) based method for sensitive determination of microRNA-21. It is making use of a domino type hemin/G-wire supramolecular DNA nanostructure (where “G-wire” represents a guanine-rich DNA structure) without a base pairing dependence. A glassy carbon electrode was modified with carbon dots (prepared from fullerene) and TiO2 nanoneedles. In the first step, a first hairpin 1 (H1) binds to microRNA-21 to form the hybridized complex in solution. This is followed by a T7 exonuclease (T7 Exo)-assisted target recycling to obtain a simulated target which can unfold hairpin 2 (H2) to form a double-stranded structure. After cleavage by T7 Exo, the G-rich sequences in H2 re-fold into G-quadruplexes on the electrode to form hemin/G-wire supramolecular nanostructure with the strand 1 (S1, a custom-made G-rich sequence) and hemin. As a result, the hemin/G-wire catalyzes the reaction of peroxothiosulfate that generates ECL. Thus, the signal is strongly enhanced. The method allows for the determination of microRNA-21 with a detection limit as low as 0.1 fM. It is conceived to represent a valuable tool in cancer research.

The hemin/G-wire supramolecular nanostructures assembled on a carbon dot (CD)-based glassy carbon electrode (GCE), thereby achieving electrochemiluminescence (ECL) signal amplification of the CD/S2O82− system and sensitive detection of microRNA-21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen W, Yao X, Zhou X, Zhao K, Deng A, Li J (2018) Electrochemiluminescence based competitive immunoassay for Sudan I by using gold-functionalized graphitic carbon nitride and au/cu alloy nanoflowers. Microchim Acta 185:275

    Article  CAS  Google Scholar 

  2. Jian Y, Wang H, Lan F, Liang L, Ren N, Liu H, Ge S, Yu J (2018) Electrochemiluminescence based detection of microRNA by applying an amplification strategy and hg (II)-triggered disassembly of a metalorganic frameworks functionalized with ruthenium (II) tris (bipyridine). Microchim Acta 185:133

    Article  CAS  Google Scholar 

  3. Kahn J, Trifonov A, Cecconello A, Guo W, Fan C, Willner I (2015) Integration of switchable DNA-based hydrogels with surfaces by the hybridization chain reaction. Nano Lett 15:7773–7778

    Article  CAS  PubMed  Google Scholar 

  4. Chen A, Gui G, Zhuo Y, Chai Y, Xiang Y, Yuan R (2015) Signal-off electrochemiluminescence biosensor based on phi29 DNA polymerase mediated strand displacement amplification for microRNA detection. Anal Chem 87:6328–6334

    Article  CAS  PubMed  Google Scholar 

  5. Wu L, Tan L, Zhao Y, Wang X (2015) Based electrochemiluminescence origami device for protein detection using assembled cascade DNA–carbon dots nanotags based on rolling circle amplification. Biosens Bioelectron 68:413–420

    Article  CAS  PubMed  Google Scholar 

  6. Xiao L, Chai Y, Yuan R, Cao Y, Wang H, Bai L (2013) Amplified electrochemiluminescence of luminol based on hybridization chain reaction and in situ generate co-reactant for highly sensitive immunoassay. Talanta 115:577–582

    Article  CAS  PubMed  Google Scholar 

  7. Chen A, Ma S, Zhuo Y, Chai Y, Yuan R (2016) In situ electrochemical generation of electrochemiluminescent silver naonoclusters on target-cycling synchronized rolling circle amplification platform for microRNA detection. Anal Chem 88:3203–3210

    Article  CAS  PubMed  Google Scholar 

  8. Zhu G, Hu R, Zhao Z, Chen Z, Zhang X, Tan W (2013) Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. J Am Chem Soc 135:16438–16445

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R (2016) Sensitive electrochemiluminescence immunosensor for detection of N-acetyl-β-d-glucosaminidase based on a “light-switch” molecule combined with DNA dendrimer. Anal Chem 88:5797–5803

    Article  CAS  PubMed  Google Scholar 

  10. Xie S, Dong Y, Yuan Y, Chai Y, Yuan R (2016) Ultrasensitive lipopolysaccharides detection based on doxorubicin conjugated N-(Aminobutyl)-N-(ethylisoluminol) as electrochemiluminescence indicator and self-assembled tetrahedron DNA dendrimers as nanocarriers. Anal Chem 88:5218–5224

    Article  CAS  PubMed  Google Scholar 

  11. Zhang P, Wu X, Yuan R, Chai Y (2015) An “off–on” electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Anal Chem 87:3202–3207

    Article  CAS  PubMed  Google Scholar 

  12. Jiang B, Yang M, Yang C, Xiang Y, Yuan R (2017) Methylation-induced inactivation of restriction enzyme for amplified and signal-on electrochemiluminescence detection of methyltransferase activity. Sensors Actuators B Chem 247:573–579

    Article  CAS  Google Scholar 

  13. Lin J, Yan Y, Ou T, Tan J, Huang S, Li D, Huang Z, Gu L (2010) Effective detection and separation method for G-quadruplex DNA based on its specific precipitation with Mg2+. Biomacromolecules 11:3384–3389

    Article  CAS  PubMed  Google Scholar 

  14. Ye C, Wang M, Li L, Luo H, Li N (2017) Fabrication of Pt/Cu3(PO4)2 ultrathin nanosheet heterostructure for photoelectrochemical microRNA sensing using novel G-wire-enhanced strategy. Nanoscale 9:7526–7532

    Article  CAS  PubMed  Google Scholar 

  15. Das R, Debnath M, Gaurav A, Dash J (2014) Environment-sensitive probes containing a 2, 6-diethynylpyridine motif for fluorescence turn-on detection and induction of nanoarchitectures of human telomeric quadruplex. Chem Eur J 20:16688–16693

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y, Luo H, Li N (2013) A highly sensitive resonance Rayleigh scattering method to discriminate a parallel-stranded G-quadruplex from DNA with other topologies and structures. Chem Commun 49:6209–6211

    Article  CAS  Google Scholar 

  17. Baker S, Baker G (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  18. Dong Y, Pang H, Yang H, Guo C, Shao J, Chi Y, Li C, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52:7800–7804

    Article  CAS  Google Scholar 

  19. Zhai Q, Li J, Wang E (2017) Recent advances based on nanomaterials as electrochemiluminescence probes for the fabrication of sensors. ChemElectroChem 4:1639–1650

    Article  CAS  Google Scholar 

  20. Qiu Y, Zhou B, Yang X, Long D, Hao Y, Yang P (2017) Novel single-cell analysis platform based on a solid-state zinc-coadsorbed carbon dots electrochemiluminescence probe for the evaluation of CD44 expression on breast cancer cells. ACS Appl Mater Interfaces 9:16848–16856

    Article  CAS  PubMed  Google Scholar 

  21. Xing B, Zhu W, Zheng X, Zhu Y, Wei Q, Wu D (2018) Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/au NPs-luminol for insulin detection. Sensors Actuators B Chem 265:403–411

    Article  CAS  Google Scholar 

  22. Han Q, Wang R, Xing B, Chi H, Wu D, Wei Q (2018) Label-free photoelectrochemical aptasensor for tetracycline detection based. Biosens Bioelectron 106:7–13

    Article  CAS  PubMed  Google Scholar 

  23. Xing B, Zhu W, Zheng X, Zhu Y, Wei Q, Wu D (2018) Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/au NPs-luminol for insulin detection. Biosens Bioelectron 99:493–499

    Article  CAS  PubMed  Google Scholar 

  24. Ren X, Ma H, Zhang T, Zhang Y, Yan T, Du B, Wei Q (2017) Sulfur-doped graphene-based immunological biosensing platform for multianalysis of cancer biomarkers. ACS Appl Mater Interfaces 9:37637–37644

    Article  CAS  PubMed  Google Scholar 

  25. Shen J, Zhu Y, Chen C, Yang X, Li C (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47:2580–2582

    Article  CAS  Google Scholar 

  26. Ma M, Zhang X, Zhuo Y, Chai Y, Yuan R (2015) An amplified electrochemiluminescent aptasensor using au nanoparticles capped by 3,4,9,10-perylene tetracar. Nanoscale 7:2085–2092

    Article  CAS  PubMed  Google Scholar 

  27. Zhao W, Han Y, Zhu Y, Zhang N, Xu J, Chen H (2015) DNA labeling generates a unique amplification probe for sensitive photoelectrochemical immunoassay of HIV-1 p24 antigen. Anal Chem 87:5496–5499

    Article  CAS  PubMed  Google Scholar 

  28. Ding Z, Quinn B, Haram S, Pell L, Korgel B (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  PubMed  Google Scholar 

  29. Ma M, Zhuo Y, Yuan R, Chai Y (2015) New signal amplification strategy using semicarbazide as co-reaction accelerator for highly sensitive electrochemiluminescent aptasensor. Anal Chem 87:11389–11397

    Article  CAS  PubMed  Google Scholar 

  30. Zhao J, Lei Y, Chai Y, Yuan R, Zhuo Y (2016) Novel electrochemiluminescence of perylene derivative and its application to mercury ion detection based on a dual amplification strategy. Biosens Bioelectron 86:720–727

    Article  CAS  PubMed  Google Scholar 

  31. Azzouzi S, Wing C, Kor K, Turner A, Ali M, Beni V (2017) An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of micro-RNA-21. Biosens Bioelectron 92:154–161

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Gao Y, Liu H, Xia N (2015) An ultrasensitive electrochemical microRNAs sensor based on microRNAs-initiated cleavage of DNA by duplex-specific nuclease and signal amplification of enzyme plus redox cycling reaction. Sensors Actuators B Chem 208:137–142

    Article  CAS  Google Scholar 

  33. Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183:297–304

    Article  CAS  Google Scholar 

  34. Yuan R, Yu X, Zhang Y, Xu L, Cheng W, Tu Z, Ding S (2017) Target-triggered DNA nanoassembly on quantum dots and DNAzyme-modulated double quenching for ultrasensitive microRNA biosensing. Biosens Bioelectron 92:342–348

    Article  CAS  PubMed  Google Scholar 

  35. Liu W, Zhou X, Xing D (2014) Rapid and reliable microRNA detection by stacking hybridization on electrochemiluminescent chip system. Biosens Bioelectron 58:388–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the NNSF of China (21775124, 21575116, 21675129, 51473136,21675130), the Natural Science Foundation Project of CQ CSTC (cstc2018jcyjAX0546) and the Fundamental Research Funds for the Central Universities (XDJK2018AA003), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhuo or Ruo Yuan.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Chen, A., Yu, Y. et al. Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Microchim Acta 185, 432 (2018). https://doi.org/10.1007/s00604-018-2959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2959-3

Keywords

Navigation