Skip to main content
Log in

Electrochemiluminescence based detection of microRNA by applying an amplification strategy and Hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II)tris(bipyridine)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemiluminescence (ECL) biosensor is described for the detection of microRNA (miRNA-155) based on tris(bipyridine)ruthenium(II) functionalized metal organic framework (RuMOF) materials. The material was prepared by a solvothermal method and was found to be stable even in acidic solution. However, it is selectively and sensitively disassembled by Hg(II) ions, resulting in the release of large quantities of Ru(II)(bpy)3 ions, which produces a strong ECL signal. In view of the ion-selective disassembly and release and strand displacement process, an ultrasensitive ECL sensing method was established for detection of microRNAs. In the presence of the target, the hairpin structure of H1 can open and hybridize with the hairpin probe H2 to form a more stable H1-H2 duplex structure than the H1-target hybrid. The target of hybridization to H1 was immediately freed from the structure and the released target re-entered the new hairpin assembly target recovery process. The remaining H2 single fragment can bind to the I-RuMOFs-conjugates. The more hairpin probes H1, the more I-RuMOFs-conjugates load the DNA fragments, leading to the signal amplification. The method works in the 0.8 f. to 1.0 nM miRNA-155 concentration range and has a detection limit of 0.3 fM. The assay is sensitive, fairly specific and remarkably stable. In our perception, it offers an attractive tool for the sensitive detection of microRNAs in clinical samples.

An electrochemiluminescence (ECL) based biosensor is described for the detection of microRNA (miRNA-155) based on the use of a metal organic framework functionalized with ruthenium(II)tris(bipyridine) that was deposited on a glassy carbon electrode (GCE) modified with gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arner P, Kulyte A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11:276–288

    Article  CAS  Google Scholar 

  2. Wronska A, Kurkowska-Jastrzebska I, Santulli G (2015) Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol 213:60–83

    Article  CAS  Google Scholar 

  3. Donnem T, Eklo K, Berg T, Sorbye SW, Lonvik K, Al-Saad S (2011) Prognostic impact of miR-155 in non-small cell lung cancer evaluated by in situ hybridization. J Transl Med 9:6

    Article  Google Scholar 

  4. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JM (2004) Mourelatos microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155–161

    Article  CAS  Google Scholar 

  5. Kadimisetty K, Malla S, Sardesai NP, Joshi AA, Faria RC, Lee NH (2015) Automated multiplexed ECL immunoarrays for cancer biomarker proteins. Anal Chem 87:4472–4478

    Article  CAS  Google Scholar 

  6. Ge SG, Lan FF, Liang LL, Ren N, Li L, Liu HY (2017) Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction. ACS Appl Mater Inter 9:6670–6678

    Article  CAS  Google Scholar 

  7. Liang LL, Lan FF, Ge SG, Yu JH, Ren N, Yan M (2017) Metal-enhanced ratiometric fluorescence/naked eye bimodal biosensor for lead ions analysis with bifunctional nanocomposite probes. Anal Chem 89:3597–3605

    Article  CAS  Google Scholar 

  8. Shen W, Deng HM, Ren YQ, Gao ZQ (2013) A real-time colorimetric assay for label-free detection of microRNAs down to sub-femtomolar levels. Chem Commun 49:4959–4961

    Article  CAS  Google Scholar 

  9. Parshetti GK, Lin FH, Doong RA (2013) Sensitive amperometric immunosensor for α-fetoprotein detection based on multifunctional dumbbell-like au-Fe3O4 heterostructures. Sens Actuat B chem 186:34–43

    Article  CAS  Google Scholar 

  10. Lin DJ, Wu J, Wang M, Yan F, Ju HX (2012) Triple signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing. Anal Chem 84:3662–3668

    Article  CAS  Google Scholar 

  11. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Accounts Chem Res 46:792–801

    Article  CAS  Google Scholar 

  12. Akter R, Rahman MA, Rhee CK (2012) Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal Chem 84:6407–6415

    Article  CAS  Google Scholar 

  13. Du D, Zou ZX, Shin YS, Wang J, Wu H, Engelhard MH (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82:2989–2995

    Article  CAS  Google Scholar 

  14. Miao W, Choi JP, Bard AJ (2002) Electrogenerated chemiluminescence: the Tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited a new route involving TPrA•+ cation radicals. J Am Chem Soc 124:14478–14485

    Article  CAS  Google Scholar 

  15. Ogawa M, Nakamura T, Mori JI, Kuroda K (2000) Luminescence of Tris(2,2′-bipyridine)ruthenium(II) cations ([Ru(bpy)3]2+) adsorbed in mesoporous silica. J Phys Chem C B 104:8554–8556

    Article  CAS  Google Scholar 

  16. Wang WJ, Yuan DQ (2014) Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO(2)/CH(4) separation. Sci Rep 4:5711

    Article  CAS  Google Scholar 

  17. Nunes GG, Seisenbaeva GA, Kessler VG (2011) Crystal engineering of nanomorphology for complex oxide materials via thermal decomposition of metal-organic frameworks. Cryst Growth Des 11:1238–1243

    Article  CAS  Google Scholar 

  18. Tan LL, Song N, Zhang XA, Li HW, Wang B, Yang YW (2016) Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. J Mater Chem B 4:135–140

    Article  CAS  Google Scholar 

  19. Wu MS, He LJ, Xu JJ, Chen HY (2014) RuSi@Ru(bpy)3 2+/au@Ag2S nanoparticles electrochemiluminescence resonance energy transfer system for sensitive DNA detection. Anal Chem 86:4559–4565

    Article  CAS  Google Scholar 

  20. Li LL, Liu HY, Shen YY, Zhang JR, Zhu JJ (2011) Electrogenerated chemiluminescence of au nanoclusters for the detection of dopamine. Anal Chem 83:661–665

    Article  CAS  Google Scholar 

  21. Gu WL, Deng X, Gu XX, Jia XF, Lou BH, Zhang XW (2015) Stabilized, superparamagnetic functionalized graphene/Fe3O4@au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application. Anal Chem 87:1876–1881

    Article  CAS  Google Scholar 

  22. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  23. Lin XM, Luo FQ, Zheng LY, Gao GM, Chi YW (2015) Fast, sensitive, and selective ion-triggered disassembly and release based on tris(bipyridine)ruthenium(II)-functionalized metal-organic frameworks. Anal Chem 87:4864–4870

    Article  CAS  Google Scholar 

  24. Li CX, Li YX, Xu X, Wang XY, Chen Y, Yang XD (2014) Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly. Biosens Bioelectron 60:57–63

    Article  CAS  Google Scholar 

  25. Liu SF, Wang Y, Ming JJ, Lin Y, Cheng CB, Li F (2013) Enzyme-free and ultrasensitive electrochemical detection of nucleic acids by target catalyzed hairpin assembly followed with hybridization chain reaction. Biosens Bioelectron 49:472–477

    Article  CAS  Google Scholar 

  26. Zhang DY, Chen SX, Yin P (2012) Optimizing the specificity of nucleic acid hybridization. Nat Chem 4:208–214

    Article  CAS  Google Scholar 

  27. Zheng AX, Wang JR, Li J, Song XR, Chen GN, Yang HH (2012) Enzyme-free fluorescence aptasensor for amplification detection of human thrombin via target-catalyzed hairpin assembly. Biosens Bioelectron 36:217–221

    Article  CAS  Google Scholar 

  28. Jiang Y, Li B, Milligan JN, Bhadra S, Ellington AD (2013) Real-time detection of isothermal amplification reactions with thermostable catalytic hairpin assembly. J Am Chem Soc 135:7430–7433

    Article  CAS  Google Scholar 

  29. Yang CY, Shi K, Dou BT, Xiang Y, Chai YQ, Yuan R (2015) In situ DNA-templated synthesis of silver nanoclusters for ultrasensitive and label-free electrochemical detection of microRNA. ACS Appl Mater Inter 7:1188–1193

    Article  CAS  Google Scholar 

  30. Liu L, Xia N, Liu HP, Kang X, Liu XS, Xue C (2014) Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosens Bioelectron 53:399–405

    Article  CAS  Google Scholar 

  31. Zhou YL, Li BC, Wang MH, Wang J, Yin HS, Ai SY (2017) Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification. Microchim Acta 184:4359–4365

    Article  CAS  Google Scholar 

  32. Sang Y, Xu YJ, Xu LL, Cheng W, Li XM, Wu JL, Ding SJ (2017) Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease. Microchim Acta 184:2465–2471

    Article  CAS  Google Scholar 

  33. Xiong HT, Zheng XW (2017) Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Microchim Acta 184:1781–1789

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21575051, 21775055, 21501090), 111 Project of International Corporation on Advanced Cement-based Materials (No. D17001) and the program of Taishan Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyun Liu or Shenguang Ge.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Y., Wang, H., Lan, F. et al. Electrochemiluminescence based detection of microRNA by applying an amplification strategy and Hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II)tris(bipyridine). Microchim Acta 185, 133 (2018). https://doi.org/10.1007/s00604-018-2693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2693-x

Keywords

Navigation