Skip to main content
Log in

Poly(styrene-4-sulfonate)-protected copper nanoclusters as a fluorometric probe for sequential detection of cytochrome c and trypsin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Stable copper nanoclusters (CuNCs) were prepared by utilizing D-penicillamine as both the stabilizer and reductant. The emission of the CuNCs (with excitation/emission peaks at 390/645 nm) is largely stabilized by coating with poly(sodium-p-styrenesulfonate) (PSS). Cytochrome c (Cyt c) quenches the fluorescence of the PSS-coated CuNCs, and this effect was exploited to design a quenchometric fluorometric assay for Cyt c. If trypsin is added to the loaded CuNCs, it will hydrolyze Cyt c to form peptide fragments, and fluorescence is gradually restored. A highly sensitive and fluorometric turn-off-on assay was constructed for sequential detection of Cyt c and trypsin. The linear ranges for Cyt c and trypsin are from 8.0 nM to 680 nM, and from 0.1 to 6.0 μg mL−1, and the lower detection limits are 0.83 nM and 20 ng mL−1 for Cyt c and trypsin, respectively.

Schematic illustration of the fluorometric assay for trypsin based on the electron transfer between poly(p-styrenesulfonate)-protected copper nanoclusters (PSS-CuNCs) and cytochrome c (Cyt c).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41:832–836

    Article  CAS  PubMed  Google Scholar 

  2. Hu L, Han S, Parveen S, Yuan Y, Zhang L, Xu G (2012) Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens Bioelectron 32:297–299

    Article  CAS  PubMed  Google Scholar 

  3. Poon CY, Li Q, Zhang J, Li Z, Dong C, Lee AW et al (2016) FRET-based modified graphene quantum dots for direct trypsin quantification in urine. Anal Chim Acta 917:64–70

    Article  CAS  PubMed  Google Scholar 

  4. Miao P, Liu T, Li XX, Ning LM, Yin J, Han K (2013) Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Biosens Bioelectron 49:20

  5. Huttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L et al (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 11:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heiskanen KM, Bhat MB, Wang HW, Ma JJ, Nieminen AL (1999) Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J Biol Chem 274:5654–5658

    Article  CAS  PubMed  Google Scholar 

  7. Torkzadeh-Mahag M, Ataei F, Nikkhah M, Hosseinkhani S (2012) Design and development of a whole-cell luminescent biosensor for detection of early-stage pf apoptosis. Biosens Bioelectron 38:362–368

    Article  CAS  Google Scholar 

  8. Cao M, Cao C, Liu M, Wang P, Zhu C (2009) Selective fluoreometry of cytochrome c using glutathione-capped CdTe quantum dots in weakly basic medium. Microchim Acta 165:341–346

    Article  CAS  Google Scholar 

  9. Chattoraj S (2016) Cytochrome c-capped fluorescent gold nanoclusters: imaging of live cells and delivery of cytochrome c. Chem Phys Chem 17:1

    Article  Google Scholar 

  10. Vestling MM, Murphy CM, Fenselau C (1990) Recognition of trypsin autolysis products by high-performance liquid chromatography and mass spectrometry. Anal Chem 62:2391–2394

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoud KA, Luong JHT (2008) Impedance method for detecting HIV-1 protease and screening for its inhibitors using ferrocene-peptide conjugate/Au nanoparticle/single-walled carbon nanotube modified electrode. Anal Chem 80:7056–7062

    Article  CAS  PubMed  Google Scholar 

  12. Arredondoa M, Stoytcheva M, Zlateva R, Cosnierb S (2013) Electrochemical sensing of trypsin activity. ECS Trans 45:23–28

    Article  CAS  Google Scholar 

  13. Xue WX, Zhang GX, Zhang DQ (2011) A sensitive colorimetric label-free assay for trypsin and inhibitor screening with gold nanoparticles. Analyst 136:3136–3141

    Article  CAS  PubMed  Google Scholar 

  14. Zhou CX, Wang LH, Feng JJ, Zhang YD (2016) Label-free fluorescent detection of trypsin activity based on DNA-stabilized silver nanocluster-peptide conjugates. Sensors 16:1477

    Article  CAS  Google Scholar 

  15. Wu P, Zhao T, Zhang JY, Wu L, Hou XD (2014) Analyte-Activable probe for protease based on cytochrome C capped Mn: ZnS quantum dots. Anal Chem 86:10078–10083

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Shi FP, Li Y, Su XG (2016) An ultra-sensitive and label-free fluorescent probe for trypsin and inhibitor based on DNA hosted Cu nanoclusters. Sensors Actuators B 222:945–951

    Article  CAS  Google Scholar 

  17. Crouser ED, Gadd ME, Julian MW, Huff JE, Broekemeier KM, Robbins KA et al (2003) Quantitation of cytochrome c release from rat liver mitochondria. Anal Biochem 317:67–75

    Article  CAS  PubMed  Google Scholar 

  18. Zhang XM, Qin YP, Ye HL, Ma XT, He XW, Li WY, Zhang YK (2018) Silicon nanoparticles coated with an epitope-imprinted polymer for fluorometric determination of cytochrome c. Microchim Acta 185(3):173

    Article  CAS  Google Scholar 

  19. Dong Y, Peng Y, Wang J, Wang C (2017) Determination of cytochrome c based on its enhancing effect on the electrogenerated chemiluminescence of carbon quantum dots. Microchim Acta 184(7):2089–2095

    Article  CAS  Google Scholar 

  20. Salehnia F, Hosseini M, Ganjali MR (2017) A fluorometric aptamer based assay for cytochrome c using fluorescent graphitic carbon nitride nanosheets. Microchim Acta 184:2157–2163

    Article  CAS  Google Scholar 

  21. Guo YM, Cao FP, Lei XL, Mang LH, Cheng SJ, Song JT (2016) Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. Nanoscale 8:4852–4863

    Article  CAS  PubMed  Google Scholar 

  22. Lu Y, Wei W, Chen W (2012) Copper nanoclusters: synthesis, characterization and properties. Chin Sci Bull 57:41–47

    Article  CAS  Google Scholar 

  23. Huang H, Li H, Wang AJ, Zhong SX, Fang KM, Feng JJ (2014) Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging. Analyst 139:6536–6541

    Article  CAS  PubMed  Google Scholar 

  24. Luo YW, Miao H, Yang XM (2015) Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1. Talanta 144:488–495

    Article  CAS  PubMed  Google Scholar 

  25. Zhong YP, Deng C, He Y, Ge YL, Song GW (2016) Exploring a monothiolated β-cyclodextrin as the template to synthesize copper nanoclusters with exceptionally increased peroxidase-like activity. Microchim Acta 183:2823–2830

    Article  CAS  Google Scholar 

  26. Huang YY, Liu WD, Feng H, Ye YT, Tang C et al (2016) Luminescent Nanoswitch based on organic-phase copper nanoclusters for sensitive detection of trace amount of water in organic solvents. Anal Chem 88:7429–7434

    Article  CAS  PubMed  Google Scholar 

  27. Chen PC, Li YC, Ma YJ, Huang JY, Chen CF, Chang HT (2016) Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paperbased devices. Sci Rep 6:24882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Long TF, Guo YJ, Lin M, Yuan MK, Liu ZD et al (2016) Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(II) and D/L-penicillamine. Nanoscale 8:9764–9770

    Article  CAS  PubMed  Google Scholar 

  29. Jia XF, Yang X, Li J, Li DY, Wang E (2014) Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem Commun 50:237–239

    Article  CAS  Google Scholar 

  30. Wang YY, Zhang Y, Liu B (2010) Conjugated polyelectrolyte based fluorescence turn-on assay for real-time monitoring of protease activity. Anal Chem 82:8604–8610

    Article  CAS  PubMed  Google Scholar 

  31. Jia XF, Li J, Wang E (2013) Cu nanoclusters with aggregation induced emission enhancement. Small 9:3873–3879

    Article  CAS  PubMed  Google Scholar 

  32. Fan CH, Plaxco KW, Heeger AJ (2002) High-efficiency fluorescence quenching of conjugated polymers by proteins. J Am Chem Soc 124:5642–5643

    Article  CAS  PubMed  Google Scholar 

  33. Zhang QF, Li WY, Chen J, Wang FY, Wang Y, Chen Y, Yu C (2013) An ultrasensitive chemiluminescence turn-on assay for protease and inhibitor screening with a natural substrate. Chem Commun 49:3137–3139

    Article  CAS  Google Scholar 

  34. Li X, Zhu SJ, Xu B, Ma K, Zhang JH, Yang B, Tian WJ (2013) Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5:7776–7779

    Article  CAS  PubMed  Google Scholar 

  35. Zaccheo BA, Crooks RM (2011) Self-powered sensor for naked-eye detection of serum trypsin. Anal Chem 83:1185–1188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Supported by National Natural Science Foundation of China (21707030) and Wuhan Youth Science and technology plan (2016070204010133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu He.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 3194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., He, Y., Han, Y. et al. Poly(styrene-4-sulfonate)-protected copper nanoclusters as a fluorometric probe for sequential detection of cytochrome c and trypsin. Microchim Acta 185, 383 (2018). https://doi.org/10.1007/s00604-018-2920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2920-5

Keywords

Navigation