Skip to main content
Log in

A voltammetric immunoassay for the carcinoembryonic antigen using a self-assembled magnetic nanocomposite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a voltammetric immunoassay for the carcinoembryonic antigen (CEA). It is based on the use of a self-assembled magnetic nanocomposite as multifunctional signal amplification platform. The core of the nanocomposite consists of Fe3O4 microspheres, and the shell of zirconium hexacyanoferrate loaded with gold nanoparticles (AuNPs@ZrHCF@Fe3O4). The material was synthesized by an electrostatic self-assembly process which is caused by the strong interaction between cyano groups and AuNPs. The surface of the Fe3O4 microspheres was functionalized with amino groups to facilitate the immobilization of ZrHCF which acts as an electron mediator. The nanocomposite was placed on a glassy carbon electrode which then displays noteworthy electrocatalytic activity toward the reduction of hydrogen peroxide (H2O2). The AuNPs serve as a support for the immobilization of antibodies by the interaction between AuNPs and amino groups on antibodies to construct a covalent Au-N bond. This facilitates electron transfer on the electrode surface using H2O2 as the electrochemical probe. Square wave voltammetry (measured typically at +0.2 V vs. SCE) was carried out to record the electrochemical behavior. Under the optimal conditions, a response is linear in the 0.5 pg·mL−1 to 50 ng·mL−1 CEA concentration range, and the detection limit is as low as 0.15 pg·mL−1 (S/N = 3). The method is selective, highly stable and acceptably reproducible.

A self-assembly magnetic nanocomposite for voltammetric immunoassay of CEA. GCE glassy carbon electrode; Au NPs gold nanoparticles; ZrHCF zirconium hexacyanoferrate; CEA carcinoembryonic antigen; Anti-CEA CEA antibody; BSA bovine serum albumin; SWV square wave voltammetry. A high sensitive voltammetric immunoassay method has been used for detecting CEA, It is based on a self-assembled magnetic nanocomposite (Au NPs@ZrHCF@Fe3O4) as multifunctional signal amplification platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP (1989) Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57(2):327–334

    Article  CAS  PubMed  Google Scholar 

  2. Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen C (1993) An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer. JAMA 270(8):943–947

    Article  CAS  PubMed  Google Scholar 

  3. Amani J, Khoshroo A, Rahimi-Nasrabadi M (2017) Electrochemical immunosensor for the breast cancer marker CA 15-3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol. Microchim Acta 185(1):79

    Article  CAS  Google Scholar 

  4. Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184:389–414

    Article  CAS  Google Scholar 

  5. Xian Z, Chao-Rui L, Wei-Cheng W, Jian X, Ya-Ling H, Xian-Xian Y, Bin T, Xi-Peng Z, Chuang S, Shi-Jia D (2016) A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan. Food Chem 192:197–202

    Article  CAS  Google Scholar 

  6. Qingling L, Dali L, Lin X, Ruiqing X, Wei L, Kuang S, Hongwei S (2015) Wire-in-Tube IrOx architectures: alternative label-free immunosensor for amperometric immunoassay toward α-Fetoprotein. ACS Appl Mater Interfaces 7(40):22719–22726

    Article  CAS  Google Scholar 

  7. Yang Y, Tu Y, Wang X, Pan J, Ding Y (2015) A label-free immunosensor for ultrasensitive detection of ketamine based on quartz crystal microbalance. Sensors 15(4):8540–8549

    Article  CAS  PubMed  Google Scholar 

  8. Yukird J, Wongtangprasert T, Rangkupan R, Chailapakul O, Pisitkun T, Rodthongkum N (2017) Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection. Biosens Bioelectron 87:249–255

    Article  CAS  PubMed  Google Scholar 

  9. Amouzadeh TM, Shamsipur M, Mostafaie A (2016) A high sensitive label-free immunosensor for the determination of human serum IgG using overoxidized polypyrrole decorated with gold nanoparticle modified electrode. Mater Sci Eng C Mater Biol Appl 59:965–969

    Article  CAS  Google Scholar 

  10. Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal Chem 81(6):2168–2175

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Li H, Zhang Y, Wei Q, Ma H, Wu D, Li Y, Zhang Y, Du B (2014) Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein. Biosens Bioelectron 53(6):305–309

    Article  CAS  PubMed  Google Scholar 

  12. Chen FH, Zhang LM, Chen QT, Zhang Y, Zhang ZJ (2010) Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun 46(45):8633–8635

    Article  CAS  Google Scholar 

  13. Lai W, Tang D, Zhuang J, Chen G, Yang H (2014) Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate. Anal Chem 86(10):5061–5068

    Article  CAS  PubMed  Google Scholar 

  14. Lei Y, Chen CS, Tu YJ, Huang YH, Zhang H (2015) Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, effects of pH and bicarbonate ions. Environ Sci Technol 49(11):6838–6845

    Article  CAS  PubMed  Google Scholar 

  15. Li F, Han J, Jiang L, Wang Y, Li Y, Dong Y, Wei Q (2015) An ultrasensitive sandwich-type electrochemical immunosensor based on signal amplification strategy of gold nanoparticles functionalized magnetic multi-walled carbon nanotubes loaded with lead ions. Biosens Bioelectron 68:626–632

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Ma H, Wang X, Pang X, Wu D, Du B, Wei Q (2015) Novel signal amplification strategy for ultrasensitive sandwich-type electrochemical immunosensor employing Pd-Fe3O4-GS as the matrix and SiO2 as the label. Biosens Bioelectron 74:59–65

    Article  CAS  PubMed  Google Scholar 

  17. Shen XC, Fang XZ, Zhou YH, Liang H (2004) Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superparamagnetic magnetite nanopar- ticles. Chem Lett 33(11):1468–1469

    Article  CAS  Google Scholar 

  18. Xie H, Zhang Q, Wang Q, Chai Y, Yuan Y, Yuan R (2015) Fe3O4NPs mediated nonenzymatic electrochemical immunosensor for the total protein of Nosema bombycis detection without addition of substrate. Chem Commun 51(33):7132–7135

    Article  CAS  Google Scholar 

  19. Yang Y, Liu Q, Liu XP, Liu PZ, Mao CJ, Niu HL, Jin BK, Zhang SY (2016) Multifunctional reduced graphene oxide (RGO)/Fe3O4/CdSe nanocomposite for electrochemiluminescence immunosensor. Electrochim Acta 190:948–955

    Article  CAS  Google Scholar 

  20. Gan C, Ling L, He Z, Lei H, Liu Y (2016) In-situ assembly of biocompatible core-shell hierarchical nanostructures sensitized immunosensor for microcystin-LR detection. Biosens Bioelectron 78:381–389

    Article  CAS  PubMed  Google Scholar 

  21. Gill JS, Tandon SN (1977) Structural studies on some inorganic ion exchangers. J Radioanal Nucl Chem 36(2):345–351

    Article  CAS  Google Scholar 

  22. Kawamura S, Shibata S, Kurotaki K (1971) Adsorption characteristics of radionuclides on zirconium hexacyanoferrate(II). Anal Chim Acta 56(3):405–413

    Article  CAS  Google Scholar 

  23. Karyakin AA, Karyakina EE (2001) Electroanalytical applications of Prussian blue and its analogs. Russ Chem Bull 50(10):1811–1817

    Article  CAS  Google Scholar 

  24. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67(4):735–743

    Article  CAS  Google Scholar 

  25. Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J Electroanal Chem 516(1–2):119–126

    Article  CAS  Google Scholar 

  26. Mintu P, Raju K (2017) Graphene oxide layer decorated gold nanoparticles based immunosensor for the detection of prostate cancer risk factor. Anal Biochem 536:51–58

    Article  CAS  Google Scholar 

  27. Zhang S, Li R, Liu X, Yang L, Lu Q, Liu M, Li H (2017) A novel multiple signal amplifying immunosensor based on the strategy of in situ-produced electroactive substance by ALP and carbon-based Ag-Au bimetallic as the catalyst and signal enhancer. Biosens Bioelectron 92:457–464

    Article  CAS  PubMed  Google Scholar 

  28. Han Q, Wang Z, Xia J, Chen S, Zhang X, Ding Y (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395

    Article  CAS  PubMed  Google Scholar 

  29. Zhang G, Deng S, Cai W, Serge C, Zhang X, Shan D (2015) Magnetic zirconium Hexacyanoferrate(II) nanoparticle as tracing tag for electrochemical DNA assay. Anal Chem 87:9093–9100

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Liu C, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22:8426–8430

    Article  CAS  Google Scholar 

  31. Wei J, Li SS, Guo Z, Chen X, Liu JH, Huang XJ (2016) Adsorbent assisted in situ electrocatalysis: an ultra-sensitive detection of as(III) in water at Fe3O4 Nanosphere densely decorated with Au nanoparticles. Anal Chem 88(2):1154–1161

    Article  CAS  PubMed  Google Scholar 

  32. Ren K, Wu J, Ju H, Yan F (2015) Target-driven triple-binder assembly of MNAzyme for amplified electrochemical immunosensing of protein biomarker. Anal Chem 87(3):1694–1700

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Chu W, Liu W, Guo X, Jin Y, Li B (2018) Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Microchim Acta 185(3):187

    Article  CAS  Google Scholar 

  34. Huang Y, Lei J, Cheng Y, Ju H (2016) Ratiometric electrochemiluminescent strategy regulated by electrocatalysis of palladium nanocluster for immunosensing. Biosens Bioelectron 77:733–739

    Article  CAS  PubMed  Google Scholar 

  35. Yang W, Zhou X, Zhao J, Xu W (2018) A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Microchim Acta 185(2):100

    Article  CAS  Google Scholar 

  36. Shao F, Jiao L, Miao L, Wei Q, Li H (2017) A pH indicator-linked immunosorbent assay following direct amplification strategy for colorimetric detection of protein biomarkers. Biosens Bioelectron 90:1–5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Shandong Province (No.ZR2016BM20), National Natural Science Foundation of China (No.21575050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 67225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhao, G., Li, Y. et al. A voltammetric immunoassay for the carcinoembryonic antigen using a self-assembled magnetic nanocomposite. Microchim Acta 185, 387 (2018). https://doi.org/10.1007/s00604-018-2919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2919-y

Keywords

Navigation