Skip to main content
Log in

Halloysite nanotubes in analytical sciences and in drug delivery: A review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Halloysite (HNT) is a natural inorganic mineral that has many applications in manufacturing. This review (with 192 references) covers (a) the chemical properties of halloysites, (b) the effects of alkali and acid etching on the loading capacity and the release behavior of halloysites, (c) the use of halloysite nanotubes in analytical sciences and drug delivery, and (d) recent trends in the preparation of magnetic HNTs. Synthetic methods such as co-precipitation, thermal decomposition, and solvothermal method are discussed, with emphasis on optimal magnetization. In the analytical field, recent advancements are summarized in terms of applications of HNT-nanocomposites for extraction and detection of heavy metal ions, dyes, organic pollutants, and biomolecules. The review also covers methods for synthesizing molecularly imprinted polymer-modified HNTs and magnetic HNTs. With respect to drug delivery, the toxicity, techniques for drug loading and the various classes of drug-halloysite nanocomposites are discussed. This review gives a general insight on the utilization of HNT in analytical determination and drug delivery systems which may be useful for researchers to generate new ideas.

Schematic presentation of the structure of halloysite nanotubes, selected examples of modifications and functionalization, and represetative field of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. He H et al (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013(578290):1–12

    Google Scholar 

  2. Wu X, Han Y, Zhang X (2017) Spirally structured conductive composites for highly stretchable. Robust Conductors and Sensors 9(27):23007–23016

    CAS  Google Scholar 

  3. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes--the route toward applications. Science 297:787–792

    Article  CAS  PubMed  Google Scholar 

  4. Tenne R (2013) Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles. Front Phys 9:370–377

    Article  Google Scholar 

  5. Rawtani D, Agrawal YK (2012) Halloysite as support matrices: a review. Emerging Materials Research 1:212–220

    Article  CAS  Google Scholar 

  6. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250

    Article  CAS  PubMed  Google Scholar 

  7. Mousa MH, Dong Y, Davies IJ (2016) Recent advances in bionanocomposites: preparation, properties, and applications. Int J Polym Mater Polym Biomater 65:225–254

    Article  CAS  Google Scholar 

  8. Hanif M et al (2016) Halloysite nanotubes as a new drug-delivery system: a review. Clay Miner 51:469–477

    Article  CAS  Google Scholar 

  9. Zhang Y, Tang A, Yang H, Ouyang J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8–17

    Article  CAS  Google Scholar 

  10. Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820

    Article  CAS  PubMed  Google Scholar 

  11. Lvov Y, Aerov A, Fakhrullin R (2014) Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interf Sci 207:189–198

    Article  CAS  Google Scholar 

  12. Liu M et al (2016) Polysaccharide-halloysite nanotube composites for biomedical applications: a review. Clay Miner 51:457–467

    Article  CAS  Google Scholar 

  13. Liu R, Zhang B, Mei D, Zhang H, Liu J (2011) Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination 268:111–116

    Article  CAS  Google Scholar 

  14. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112-113:75–93

    Article  CAS  Google Scholar 

  15. Churchman GJ, Davy TJ, Aylmore LAG, Gilkes RJ, Self PG (1995) Characteristics of fine pores in some halloysites. Clay Miner 30:89–98

    Article  CAS  Google Scholar 

  16. Tully J, Fakhrullin R, Lvov Y (2015) Halloysite clay nanotube composites with sustained release of chemicals. Nanomaterials and Nanoarchitectures 139:87–118

  17. Lvov YM, DeVilliers MM, Fakhrullin RF (2016) The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv 13:977–986

    Article  CAS  PubMed  Google Scholar 

  18. Liu HY, Du L, Zhao YT, Tian WQ (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J Nanomater 16:1–9

  19. Hughes AD, King MR (2010) Use of naturally occurring Halloysite nanotubes for enhanced capture of flowing cells. Langmuir 26:12155–12164

    Article  CAS  PubMed  Google Scholar 

  20. Fakhrullin RF, Lvov YM (2016) Halloysite clay nanotubes for tissue engineering. Nanomedicine 11:2243–2246

    Article  CAS  PubMed  Google Scholar 

  21. Abdullayev E, Lvov Y (2013) Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B 1:2894–2903

    Article  CAS  PubMed  Google Scholar 

  22. Yu L, Wang H, Zhang Y, Zhang B, Liu J (2016) Recent advances in halloysite nanotube derived composites for water treatment. Environ Sci: Nano 3:28–44

    CAS  Google Scholar 

  23. Pasbakhsh P, Churchman GJ, Keeling JL (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 74:47–57

    Article  CAS  Google Scholar 

  24. Fizir M et al (2017) Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug. J Colloid Interface Sci 505:476–488

    Article  CAS  PubMed  Google Scholar 

  25. Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719

    Article  CAS  Google Scholar 

  26. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  CAS  Google Scholar 

  27. Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295

    CAS  Google Scholar 

  28. Peixoto AF, Fernandes AC, Pereira C, Pires J, Freire C (2016) Physicochemical characterization of organosilylated halloysite clay nanotubes. Microporous Mesoporous Mater 219:145–154

    Article  CAS  Google Scholar 

  29. Yang J et al (2016) Enhanced therapeutic efficacy of doxorubicin for breast Cancer using chitosan oligosaccharide-modified Halloysite nanotubes. ACS Appl Mater Interfaces 8:26578–26590

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H et al (2015) Selective modification of Halloysite nanotubes with 1-Pyrenylboronic acid: a novel fluorescence probe with highly selective and sensitive response to Hyperoxide. ACS Appl Mater Interfaces 7:23805–23811

    Article  CAS  PubMed  Google Scholar 

  31. Bordeepong S, Bhongsuwan D, Pungrassami T, Bhongsuwan T (2011) Characterization of halloysite from Thung Yai District, Nakhon Si Thammarat Province, in Southern Thailand. J Sci Technol 33(5):599–607

  32. Abdullayev E, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of Halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226

    Article  CAS  PubMed  Google Scholar 

  33. Zhang A-B et al (2012) Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids Surf A Physicochem Eng Asp 396:182–188

    Article  CAS  Google Scholar 

  34. White RD, Bavykin DV, Walsh FC (2012) The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions. Nanotechnology 23:065705

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Garcia D et al (2017) Characterization of selectively etched halloysite nanotubes by acid treatment. Appl Surf Sci 422:616–625

    Article  CAS  Google Scholar 

  36. Wang Q, Zhang J, Zheng Y, Wang A (2014) Adsorption and release of ofloxacin from acid- and heat-treated halloysite. Colloids Surf B: Biointerfaces 113:51–58

    Article  CAS  PubMed  Google Scholar 

  37. Wang Q, Zhang J, Wang A (2013) Alkali activation of halloysite for adsorption and release of ofloxacin. Appl Surf Sci 287:54–61

    Article  CAS  Google Scholar 

  38. Kiani G (2014) High removal capacity of silver ions from aqueous solution onto Halloysite nanotubes. Appl Clay Sci 90:159–164

    Article  CAS  Google Scholar 

  39. Mellouk S et al (2009) Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions. Appl Clay Sci 44:230–236

    Article  CAS  Google Scholar 

  40. Luo P et al (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Abdullayev E, Vasiliev A, Lvov Y (2013) Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci 406:121–129

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Wen F, Pan L, Liu Z, Dong Y (2012) Removal of radiocobalt ions from aqueous solutions by natural halloysite nanotubes. J Radioanal Nucl Chem 295:431–438

    Article  CAS  Google Scholar 

  43. Zhang W, Zuo XD, Wu CW (2015) Synthesis and magnetic properties of carbon nanotube-iron oxide nanoparticle composites for hyperthermia: a review. Rev Adv Mater Sci 40:165–176

    Google Scholar 

  44. Xie Y, Qian D, Wu D, Ma X (2011) Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J 168:959–963

    Article  CAS  Google Scholar 

  45. Pan J et al (2011) Selective recognition of 2,4,6-Trichlorophenol by molecularly imprinted polymers based on magnetic Halloysite nanotubes composites. J Phys Chem C 115:5440–5449

    Article  CAS  Google Scholar 

  46. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  PubMed  Google Scholar 

  47. Pan J et al (2012) Switched recognition and release ability of temperature responsive molecularly imprinted polymers based on magnetic halloysite nanotubes. J Mater Chem 22:17167–17175

    Article  CAS  Google Scholar 

  48. He J et al (2016) Magnetic organic–inorganic nanocomposite with ultrathin imprinted polymers via an in situ surface-initiated approach for specific separation of chloramphenicol. RSC Adv 6:70383–70393

    Article  CAS  Google Scholar 

  49. Tian X et al (2016) Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid. J Hazard Mater 309:151–160

    Article  CAS  PubMed  Google Scholar 

  50. Liu C et al (2017) In Situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J Alloys Compd 714:522–529

    Article  CAS  Google Scholar 

  51. Jia Z, Li Z, Ni T, Li S (2017) Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies. J Mol Liq 229:285–292

    Article  CAS  Google Scholar 

  52. Peng Q, Liu M, Zheng J, Zhou C (2015) Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads. Microporous Mesoporous Mater 201:190–201

    Article  CAS  Google Scholar 

  53. Konicki W, Hehniniak A, Arabczyk W, Mijowska E (2017) Removal of anionic dyes using magnetic Fe@graphite core-shell nanocomposite as an adsorbent from aqueous solutions. J Colloid Interface Sci 497:155–164

    Article  CAS  PubMed  Google Scholar 

  54. da Silva LA et al (2017) Methylene blue oxidation over iron oxide supported on activated carbon derived from peanut hulls. Catal Today 289:237–248

    Article  CAS  Google Scholar 

  55. Dutta DP, Venugopalan R, Chopade S (2017) Manipulating carbon nanotubes for efficient removal of both cationic and anionic dyes from wastewater. Chemistryselect 2:3878–3888

    Article  CAS  Google Scholar 

  56. Gupta K, Khatri OP (2017) Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J Colloid Interface Sci 501:11–21

    Article  CAS  PubMed  Google Scholar 

  57. Kolodynska D, Halas P, Franus M, Hubicki Z (2017) Zeolite properties improvement by chitosan modification-sorption studies. J Ind Eng Chem 52:187–196

    Article  CAS  Google Scholar 

  58. Liu W et al (2018) Mixed hemimicelle solid-phase extraction based on magnetic halloysite nanotubes and ionic liquids for the determination and extraction of azo dyes in environmental water samples. J Chromatogr A 1551:10–20

    Article  CAS  PubMed  Google Scholar 

  59. Wan XY, Zhan YQ, Long ZH, Zeng GY, He Y (2017) Core@double-shell structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal. Chem Eng J 330:491–504

    Article  CAS  Google Scholar 

  60. Massaro M et al (2017) Synthesis and characterization of Halloysite–Cyclodextrin Nanosponges for enhanced dyes adsorption. ACS Sustain Chem Eng 5:3346–3352

    Article  CAS  Google Scholar 

  61. Liu Y et al (2014) Halloysite nanotubes@reduced graphene oxide composite for removal of dyes from water and as supercapacitors. J Mater Chem A 2:4264–4269

    Article  CAS  Google Scholar 

  62. Gao C et al (2016) Novel Fe3O4/HNT@rGO composite via a facile co-precipitation method for the removal of contaminants from aqueous system. RSC Adv 6:49228–49235

    Article  CAS  Google Scholar 

  63. Zhu J, Wang Y, Liu J, Zhang Y (2014) Facile one-pot synthesis of novel spherical zeolite–reduced graphene oxide composites for cationic dye adsorption. Ind Eng Chem Res 53:13711–13717

    Article  CAS  Google Scholar 

  64. Liu L et al (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216

    Article  CAS  Google Scholar 

  65. Jiang L et al (2014) Surface modifications of halloysite nanotubes with superparamagnetic Fe3O4 nanoparticles and carbonaceous layers for efficient adsorption of dyes in water treatment. Chem Res Chin Univ 30:971–977

    Article  CAS  Google Scholar 

  66. Luo P et al (2011) Removal of methylene blue from aqueous solutions by adsorption onto chemically activated halloysite nanotubes. Korean J Chem Eng 28:800–807

    Article  CAS  Google Scholar 

  67. Du Y, Zheng P (2014) Adsorption and photodegradation of methylene blue on TiO2-halloysite adsorbents. Korean J Chem Eng 31:2051–2056

    Article  CAS  Google Scholar 

  68. Shu Z et al (2015) Nanoporous-walled silica and alumina nanotubes derived from halloysite: controllable preparation and their dye adsorption applications. Appl Clay Sci 112-113:17–24

    Article  CAS  Google Scholar 

  69. Shu Z et al (2016) Preparation of halloysite-derived mesoporous silica nanotube with enlarged specific surface area for enhanced dye adsorption. Appl Clay Sci 132-133:114–121

    Article  CAS  Google Scholar 

  70. Riahi-Madvaar R, Taher MA, Fazelirad H (2017) Synthesis and characterization of magnetic halloysite-iron oxide nanocomposite and its application for naphthol green B removal. Appl Clay Sci 137:101–106

    Article  CAS  Google Scholar 

  71. Duan J, Liu R, Chen T, Zhang B, Liu J (2012) Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions. Desalination 293:46–52

    Article  CAS  Google Scholar 

  72. Chaari I, Moussi B, Jamoussi F (2015) Interactions of the dye, C.I. direct orange 34 with natural clay. J Alloys Compd 647:720–727

    Article  CAS  Google Scholar 

  73. Kiani G, Dostali M, Rostami A, Khataee AR (2011) Adsorption studies on the removal of malachite green from aqueous solutions onto halloysite nanotubes. Appl Clay Sci 54:34–39

    CAS  Google Scholar 

  74. Zou M, Du M, Zhu H, Xu C, Fu Y (2012) Green synthesis of halloysite nanotubes supported ag nanoparticles for photocatalytic decomposition of methylene blue. J Phys D Appl Phys 45(325302):3722–3727

    Google Scholar 

  75. Cheng ZL, Sun W (2015) Preparation of N-doped ZnO-loaded halloysite nanotubes catalysts with high solar-light photocatalytic activity. Water Sci Technol 72:1817–1823

    Article  CAS  PubMed  Google Scholar 

  76. Yao P, Zhong S, Shen Z (2015) TiO2/Halloysite composites Codoped with carbon and nitrogen from melamine and their enhanced solar-light-driven photocatalytic performance. Int J Photoenergy 2015:1–8

  77. Jiang L, Huang Y, Liu T (2015) Enhanced visible-light photocatalytic performance of electrospun carbon-doped TiO2/halloysite nanotube hybrid nanofibers. J Colloid Interface Sci 439:62–68

    Article  CAS  PubMed  Google Scholar 

  78. Li C, Wang J, Feng S, Yang Z, Ding S (2013) Low-temperature synthesis of heterogeneous crystalline TiO2-halloysite nanotubes and their visible light photocatalytic activity. J Mater Chem A 1:8045–8054

    Article  CAS  Google Scholar 

  79. Li C, Wang J, Guo H, Ding S (2015) Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity. J Colloid Interface Sci 458:1–13

    Article  CAS  PubMed  Google Scholar 

  80. Li C, Zhou T, Zhu T, Li X (2015) Enhanced visible light photocatalytic activity of polyaniline-crystalline TiO2-halloysite composite nanotubes by tuning the acid dopant in the preparation. RSC Adv 5:98482–98491

    Article  CAS  Google Scholar 

  81. Chen H et al (2015) Trapping characteristic of halloysite lumen for methyl orange. Appl Surf Sci 347:769–776

    Article  CAS  Google Scholar 

  82. Zeng X, Sun Z, Wang H, Wang Q, Yang Y (2016) Supramolecular gel composites reinforced by using halloysite nanotubes loading with in-situ formed Fe3O4 nanoparticles and used for dye adsorption. Compos Sci Technol 122:149–154

    Article  CAS  Google Scholar 

  83. Li X et al (2015) Halloysite–CeO2–AgBr nanocomposite for solar light photodegradation of methyl orange. Appl Clay Sci 104:74–80

    Article  CAS  Google Scholar 

  84. Maity J, Ray SK (2018) Chitosan based nano composite adsorbent-synthesis, characterization and application for adsorption of binary mixtures of Pb(II) and cd(II) from water. Carbohydr Polym 182:159–171

    Article  CAS  PubMed  Google Scholar 

  85. Zhu K et al (2017) Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chem Eng J 311:236–246

    Article  CAS  Google Scholar 

  86. Zhou T, Li C, Jin H, Lian Y, Han W (2017) Effective adsorption/reduction of Cr(VI) oxyanion by Halloysite@polyaniline hybrid nanotubes. ACS Appl Mater Interfaces 9:6030–6043

    Article  CAS  PubMed  Google Scholar 

  87. Luo P et al (2011) Preparation and characterization of Silane coupling agent modified Halloysite for Cr(VI) removal. Ind Eng Chem Res 50:10246–10252

    Article  CAS  Google Scholar 

  88. Wang X et al (2016) Rapid adsorption of cobalt (II) by 3-aminopropyltriethoxysilane modified halloysite nanotubes. Korean J Chem Eng 33:3504–3510

    Article  CAS  Google Scholar 

  89. Xiao J et al (2016) Preparation of halloysite@graphene oxide composite and its application for high-efficient decontamination of U(VI) from aqueous solution. J Mol Liq 220:304–310

    Article  CAS  Google Scholar 

  90. Ashrafzadeh Afshar E, Taher MA, Fazelirad H (2017) Ultra-trace determination of thallium(I) using a nanocomposite consisting of magnetite, halloysite nanotubes and dibenzo-18-crown-6 for preconcentration prior to its quantitation by ET-AAS. Microchim Acta:791–797

  91. Chiew CSC et al (2016) Halloysite/alginate nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption. Appl Clay Sci 119:301–310

    Article  CAS  Google Scholar 

  92. Wang Y, Zhang X, Wang Q, Zhang B, Liu J (2014) Continuous fixed bed adsorption of cu(II) by halloysite nanotube-alginate hybrid beads: an experimental and modelling study. Water Sci Technol 70:192–199

    Article  CAS  PubMed  Google Scholar 

  93. Choo CK et al (2016) Chitosan/halloysite beads fabricated by ultrasonic-assisted extrusion-dripping and a case study application for copper ion removal. Carbohydr Polym 138:16–26

    Article  CAS  PubMed  Google Scholar 

  94. Tian X, Wang W, Wang Y, Komarneni S, Yang C (2015) Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr (VI). Microporous Mesoporous Mater 207:46–52

    Article  CAS  Google Scholar 

  95. Afzali D, Fayazi M (2016) Deposition of MnO2 nanoparticles on the magnetic halloysite nanotubes by hydrothermal method for lead(II) removal from aqueous solutions. J Taiwan Inst Chem Eng 63:421–429

    Article  CAS  Google Scholar 

  96. Fayazi M, Taher MA, Afzali D, Mostafavi A (2016) Fe3O4 and MnO2 assembled on halloysite nanotubes: a highly efficient solid-phase extractant for electrochemical detection of mercury(II) ions. Sensors Actuators B Chem 228:1–9

    Article  CAS  Google Scholar 

  97. He W et al (2015) Removal of UO 2 2+ from aqueous solution using halloysite nanotube-Fe3O4 composite. Korean J Chem Eng 33:170–177

    Article  CAS  Google Scholar 

  98. Amjadi M, Samadi A, Manzoori JL (2015) A composite prepared from halloysite nanotubes and magnetite (Fe3O4) as a new magnetic sorbent for the preconcentration of cadmium(II) prior to its determination by flame atomic absorption spectrometry. Microchim Acta 182:1627–1633

    Article  CAS  Google Scholar 

  99. Amjadi M, Samadi A, Manzoori JL, Arsalani N (2015) 5-(p-Dimethylaminobenzylidene) rhodanine-modified magnetic halloysite nanotubes as a new solid phase sorbent for silver ions. Anal Methods 7:5847–5853

    Article  CAS  Google Scholar 

  100. Li R, Hu Z, Zhang S, Li Z, Chang X (2013) Functionalized halloysite nanotubes with 2-hydroxybenzoic acid for selective solid-phase extraction of trace iron(III). Int J Environ Anal Chem 93:767–779

    Article  CAS  Google Scholar 

  101. Li R et al (2012) Highly selective solid-phase extraction of trace Pd(II) by murexide functionalized halloysite nanotubes. Anal Chim Acta 713:136–144

    Article  CAS  PubMed  Google Scholar 

  102. Kadi S et al (2012) Preparation, characterisation and application of thermally treated Algerian halloysite. Microporous Mesoporous Mater 158:47–54

    Article  CAS  Google Scholar 

  103. Dong Y, Liu Z, Chen L (2011) Removal of Zn(II) from aqueous solution by natural halloysite nanotubes. J Radioanal Nucl Chem 292:435–443

    Article  CAS  Google Scholar 

  104. Chiew CSC et al (2016) Stability and reusability of alginate-based adsorbents for repetitive lead (II) removal. Polym Degrad Stab 123:146–154

    Article  CAS  Google Scholar 

  105. Sadeghi S, Sheikhzadeh E (2009) Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples. J Hazard Mater 163:861–868

    Article  CAS  PubMed  Google Scholar 

  106. Demir A, Arisoy M (2007) Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis. J Hazard Mater 147:275–280

    Article  CAS  PubMed  Google Scholar 

  107. Zhang C-L, Cui S-J, Wang Y (2015) Adsorption removal of pefloxacin from water by halloysite nanotubes. J Ind Eng Chem 23:12–15

    Article  CAS  Google Scholar 

  108. Vasapollo G et al (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12:5908–5945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schirmer C, Meisel H (2009) Synthesis and evaluation of molecularly imprinted polymers (MIP) with affinity for the polypeptide Nisin. Food Anal Methods 2:257–263

    Article  Google Scholar 

  110. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36:609–628

    Article  CAS  PubMed  Google Scholar 

  111. Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Polymer cookery: influence of polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 35:7499–7504

  112. Pardo A, Mespouille L, Dubois P, Duez P, Blankert B (2012) Targeted extraction of active compounds from natural products by molecularly imprinted polymers. Open Chemistry 10:751–765

    Article  Google Scholar 

  113. Haupt K (2003 Sep 1) Molecularly imprinted polymers: the next generation. Anal Chem 75(17):376A–383A

    Article  CAS  PubMed  Google Scholar 

  114. Idil N, Mattiason B (2017) Imprinting of microorganisms for biosensor applications. Sensors (Basel) 17(4):29

    Article  CAS  Google Scholar 

  115. Selvolini G, Marrazza G (2017) MIP-based sensors: promising new tools for cancer biomarker determination. Sensors (Basel) 17(4):29

    Article  CAS  Google Scholar 

  116. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922–2942

    Article  CAS  PubMed  Google Scholar 

  117. Yin J, Cui Y, Yang G, Wang H (2010) Molecularly imprinted nanotubes for enantioselective drug delivery and controlled. Chem Commun (Camb) 46(41):7688–7690

  118. Hemmatpour H, Haddadi-Asl V, Roghani-Mamaqani H (2015) Synthesis of pH-sensitive poly (N,N-dimethylaminoethyl methacrylate)-grafted halloysite nanotubes for adsorption and controlled release of DPH and DS drugs. Polymer 65:143–153

    Article  CAS  Google Scholar 

  119. Li X, Yang Q, Ouyang J, Yang H, Chang S (2016) Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl Clay Sci 126:306–312

    Article  CAS  Google Scholar 

  120. Pan J et al (2012) Selective recognition of 2,4,5-trichlorophenol by temperature responsive and magnetic molecularly imprinted polymers based on halloysite nanotubes. J Mater Chem 22:3360–3369

    Article  CAS  Google Scholar 

  121. Qiu X-Z, Liang Y, Guo H-S, Wang X-B, Lin C-X (2015) Determination of phenolic compounds in environmental water by HPLC combination with on-line solid-phase extraction using molecularly imprinted polymers. J Nanosci Nanotechnol 15:9578–9584

    Article  CAS  PubMed  Google Scholar 

  122. Zhou C et al (2015) Water-compatible halloysite-imprinted polymer by Pickering emulsion polymerization for the selective recognition of herbicides. J Sep Sci 38:1365–1371

    Article  CAS  PubMed  Google Scholar 

  123. Dai J et al (2014) Highly-controllable imprinted polymer nanoshell at the surface of magnetic halloysite nanotubes for selective recognition and rapid adsorption of tetracycline. RSC Adv 4:7967–7978

    Article  CAS  Google Scholar 

  124. Zhu X, Li H, Zhou H, Zhong S (2015) Fabrication and evaluation of protein imprinted polymer based on magnetic halloysite nanotubes. RSC Adv 5:66147–66154

    Article  CAS  Google Scholar 

  125. Zhu X et al (2016) Halloysite-based dopamine-imprinted polymer for selective protein capture. J Sep Sci 39:2431–2437

    Article  CAS  PubMed  Google Scholar 

  126. Xie A et al (2016) Hollow imprinted polymer nanorods with a tunable shell using halloysite nanotubes as a sacrificial template for selective recognition and separation of chloramphenicol. RSC Adv 6:51014–51023

    Article  CAS  Google Scholar 

  127. Ma P et al (2016) A biomimetic Setaria viridis-inspired imprinted nanoadsorbent: green synthesis and application to the highly selective and fast removal of sulfamethazine. RSC Adv 6:9619–9630

    Article  CAS  Google Scholar 

  128. Margot J, Copin P-J, von Gunten U, Barry DA, Holliger C (2015) Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: influence of treatment conditions and mechanistic aspects. Biochem Eng J 103:47–59

    Article  CAS  Google Scholar 

  129. Husain M, Husain Q (2007) Applications of redox mediators in the treatment of organic pollutants by using Oxidoreductive enzymes: a review. Crit Rev Environ Sci Technol 38:1–42

    Article  CAS  Google Scholar 

  130. Kadam AA, Jang J, Lee DS (2017) Supermagnetically tuned Halloysite nanotubes functionalized with Aminosilane for covalent laccase immobilization. ACS Appl Mater Interfaces 9:15492–15501

    Article  CAS  PubMed  Google Scholar 

  131. Zhai R et al (2013) Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309

    Article  CAS  Google Scholar 

  132. Yao J et al (2014) Immobilization of laccase on chitosan–halloysite hybrid porous microspheres for phenols removal. Desalin Water Treat:1–9

  133. Ma W, Dai J, Dai X, Da Z, Yan Y (2016) Preparation and characterization of chitosan/halloysite magnetic microspheres and their application for removal of tetracycline from an aqueous solution. Desalin Water Treat 57:4162–4173

    Article  CAS  Google Scholar 

  134. Tsoufis T et al (2017) Halloysite nanotube-magnetic iron oxide nanoparticle hybrids for the rapid catalytic decomposition of pentachlorophenol. Chem Eng J 313:466–474

    Article  CAS  Google Scholar 

  135. Huo P et al (2013) Photocatalytic degradation of antibiotics in water using metal ion@TiO2/HNTs under visible light. Desalin Water Treat 52:6985–6995

    Article  CAS  Google Scholar 

  136. Li J et al (2015) Enhanced photocatalytic activity of g-C3N4-ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation. RSC Adv 5:91177–91189

    Article  CAS  Google Scholar 

  137. Abolghasemi MM, Arsalani N, Yousefi V, Arsalani M, Piryaei M (2016) Fabrication of polyaniline-coated halloysite nanotubes by in situ chemical polymerization as a solid-phase microextraction coating for the analysis of volatile organic compounds in aqueous solutions. J Sep Sci 39:956–963

    Article  CAS  PubMed  Google Scholar 

  138. Fizir M et al (2018) QbD approach by computer aided design and response surface methodology for molecularly imprinted polymer based on magnetic halloysite nanotubes for extraction of norfloxacin from real samples. Talanta 184:266–276

    Article  CAS  PubMed  Google Scholar 

  139. Saraji M, Jafari MT, Mossaddegh M (2016) Halloysite nanotubes-titanium dioxide as a solid-phase microextraction coating combined with negative corona discharge-ion mobility spectrometry for the determination of parathion. Anal Chim Acta 926:55–62

    Article  CAS  PubMed  Google Scholar 

  140. Darvishnejad M, Ebrahimzadeh H (2017) Halloysite nanotubes functionalized with a nanocomposite prepared from reduced graphene oxide and polythiophene as a viable sorbent for the preconcentration of six organochlorine pesticides prior to their quantitation by GC/MS. Microchim Acta 184:3603–3612

    Article  CAS  Google Scholar 

  141. Wu K, Feng R, Jiao Y, Zhou C (2017) Effect of halloysite nanotubes on the structure and function of important multiple blood components. Mater Sci Eng C Mater Biol Appl 75:72–78

    Article  CAS  PubMed  Google Scholar 

  142. Krejcova K, Deasy PB, Rabiskova M (2013) Diclofenac sodium entrapment and release from halloysite nanotubules. Ceska Slov Farm 62:28–34

    CAS  PubMed  Google Scholar 

  143. Hillier S, Ryan PC (2002) Identification of halloysite (7 Å) by ethylene glycol solvation: the 'MacEwan effect'. Clay Miner 37:487–496

    Article  CAS  Google Scholar 

  144. Joussein E, Petit S, Delvaux B (2007) Behavior of halloysite clay under formamide treatment. Appl Clay Sci 35:17–24

    Article  CAS  Google Scholar 

  145. Li Y, Zhang Y, Zhang Y, Sun J, Wang Z (2017) Thermal behavior analysis of halloysite–dimethylsulfoxide intercalation complex. J Therm Anal Calorim 129:985–990

    Article  CAS  Google Scholar 

  146. Tang Y et al (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos A: Appl Sci Manuf 42:345–354

    Article  CAS  Google Scholar 

  147. Price RR, Gaber BP, Lvov Y (2001) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul 18:713–722

    Article  CAS  PubMed  Google Scholar 

  148. Yendluri R et al (2017) Paclitaxel encapsulated in Halloysite clay nanotubes for intestinal and intracellular delivery. J Pharm Sci 106:3131–3139

    Article  CAS  PubMed  Google Scholar 

  149. Levis SR, Deasy PB (2003) Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. Int J Pharm 253:145–157

    Article  CAS  PubMed  Google Scholar 

  150. Yang J-H et al (2016) Drug–clay nanohybrids as sustained delivery systems. Appl Clay Sci 130:20–32

    Article  CAS  Google Scholar 

  151. Botella P, Rivero-Buceta E (2017) Safe approaches for camptothecin delivery: structural analogues and nanomedicines. J Control Release 247:28–54

    Article  CAS  PubMed  Google Scholar 

  152. Rizzo C et al (2017) Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: systems for sustained release of camptothecin. J Mater Chem B 5:3217–3229

    Article  CAS  PubMed  Google Scholar 

  153. Linlin L, Fan H, Wang L, Jin Z (2016) Does halloysite behave like an inert carrier for doxorubicin? 6:54193–54201

  154. Liu M et al (2016) Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J Mater Chem B 4:2253–2263

    Article  CAS  PubMed  Google Scholar 

  155. Lee Y, Jung GE, Cho SJ, Geckeler KE, Fuchs H (2013) Cellular interactions of doxorubicin-loaded DNA-modified halloysite nanotubes. Nanoscale 5:8577–8585

    Article  CAS  PubMed  Google Scholar 

  156. Guo M et al (2012) Halloysite nanotubes, a multifunctional Nanovehicle for anticancer drug delivery. Chin J Chem 30:2115–2120

    Article  CAS  Google Scholar 

  157. Hu Y et al (2017) Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies. Nanotechnology 375101:28

    Google Scholar 

  158. Mock CD, Jordan BC, Selvam C (2015) Recent advances of curcumin and its analogues in breast cancer prevention and treatment. RSC Adv 5:75575–75588

    Article  CAS  PubMed  Google Scholar 

  159. Kerdsakundee N et al (2017) Multifunctional nanotube-Mucoadhesive poly(methyl vinyl ether-co-maleic acid)@Hydroxypropyl methylcellulose acetate succinate composite for site-specific oral drug delivery. Adv Healthc Mater 6:1–20.

  160. Li W et al (2017) Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomater 48:238–246

    Article  CAS  PubMed  Google Scholar 

  161. Massaro M et al (2014) Functionalized halloysite multivalent glycocluster as a new drug delivery system. J Mater Chem B 2:7732–7738

    Article  CAS  PubMed  Google Scholar 

  162. Riela S et al (2016) Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Adv 6:87935–87944

    Article  Google Scholar 

  163. Massaro M et al (2016) Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B: Biointerfaces 140:505–513

    Article  CAS  PubMed  Google Scholar 

  164. Shutava TG, Fakhrullin RF, Lvov YM (2014) Spherical and tubule nanocarriers for sustained drug release. Curr Opin Pharmacol 18:141–148

    Article  CAS  PubMed  Google Scholar 

  165. Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci 12:1265–1271

    Article  CAS  PubMed  Google Scholar 

  166. Sun L, Boyer C, Grimes R, Mills DK (2016) Drug coated clay nanoparticles for delivery of chemotherapeutics. Curr Nanosci 12:207–214

    Article  CAS  Google Scholar 

  167. Yan S et al (2011) Layer-by-layer assembly of poly(L-glutamic acid)/chitosan microcapsules for high loading and sustained release of 5-fluorouracil. Eur J Pharm Biopharm 78:336–345

    Article  CAS  PubMed  Google Scholar 

  168. Rao KM, Nagappan S, Seo DJ, Ha C-S (2014) pH sensitive halloysite-sodium hyaluronate/poly(hydroxyethyl methacrylate) nanocomposites for colon cancer drug delivery. Appl Clay Sci 97-98:33–42

    Article  CAS  Google Scholar 

  169. Jiang W-T, Chang P-H, Tsai Y, Li Z (2016) Halloysite nanotubes as a carrier for the uptake of selected pharmaceuticals. Microporous Mesoporous Mater 220:298–307

    Article  CAS  Google Scholar 

  170. Qi R et al (2013) Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. Colloids Surf B: Biointerfaces 110:148–155

    Article  CAS  PubMed  Google Scholar 

  171. Tohidi S, Ghaee A, Barzin J (2016) Preparation and characterization of poly(lactic-co-glycolic acid)/chitosan electrospun membrane containing amoxicillin-loaded halloysite nanoclay. Polym Adv Technol 27:1020–1028

    Article  CAS  Google Scholar 

  172. Wang Q, Zhang J, Mu B, Fan L, Wang A (2014) Facile preparation of magnetic 2-hydroxypropyltrimethyl ammonium chloride chitosan/Fe3O4/halloysite nanotubes microspheres for the controlled release of ofloxacin. Carbohydr Polym 102:877–883

    Article  CAS  PubMed  Google Scholar 

  173. Tan D et al (2013) Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous Mesoporous Mater 179:89–98

    Article  CAS  Google Scholar 

  174. Tan D et al (2014) Loading and in vitro release of ibuprofen in tubular halloysite. Appl Clay Sci 96:50–55

    Article  CAS  Google Scholar 

  175. Li H, Zhu X, Zhou H, Zhong S (2015) Functionalization of halloysite nanotubes by enlargement and hydrophobicity for sustained release of analgesic. Colloids Surf A Physicochem Eng Asp 487:154–161

    Article  CAS  Google Scholar 

  176. Li H et al (2016) The combination of adsorption by functionalized halloysite nanotubes and encapsulation by polyelectrolyte coatings for sustained drug delivery. RSC Adv 6:54463–54470

    Article  CAS  Google Scholar 

  177. Fan L, Zhang J, Wang A (2013) In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. J Mater Chem B 1:6261–6270

    Article  CAS  PubMed  Google Scholar 

  178. Fan L, Li B, Wang Q, Wang A, Zhang J (2014) Superhydrophobic gated Polyorganosilanes/Halloysite Nanocontainers for sustained drug release. Adv Mater Interfaces 1:1300136

    Article  CAS  Google Scholar 

  179. Lun H, Ouyang J, Yang H (2014) Natural halloysite nanotubes modified as an aspirin carrier. RSC Adv 4:44197–44202

    Article  CAS  Google Scholar 

  180. Ganguly S, Das TK, Mondal S, Das NC (2016) Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. RSC Adv 6:105350–105362

    Article  CAS  Google Scholar 

  181. Shi YF, Tian Z, Zhang Y, Shen HB, Jia NQ (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett 6:600–608

    Article  Google Scholar 

  182. Wu H et al (2014) Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing. J Biomater Appl 28:1180–1189

    Article  CAS  PubMed  Google Scholar 

  183. Li F et al (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584

    Article  CAS  PubMed  Google Scholar 

  184. Long Z, Zhang J, Shen Y, Zhou C, Liu M (2017) Polyethyleneimine grafted short halloysite nanotubes for gene delivery. Materials Science & Engineering C-Materials for Biological Applications 81:224–235

    Article  CAS  Google Scholar 

  185. Ghebaur A, Garea SA, Iovu H (2012) New polymer-halloysite hybrid materials--potential controlled drug release system. Int J Pharm 436:568–573

    Article  CAS  PubMed  Google Scholar 

  186. Zargarian SS, Haddadi-Asl V, Hematpour H (2015) Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride. J Nanopart Res 17:1–13

    Article  CAS  Google Scholar 

  187. Kurczewska J, Cegłowski M, Messyasz B, Schroeder G (2018) Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Appl Clay Sci 153:134–143

    Article  CAS  Google Scholar 

  188. Sabbagh N, Akbari A, Arsalani N, Eftekhari-Sis B, Hamishekar H (2017) Halloysite-based hybrid bionanocomposite hydrogels as potential drug delivery systems. Appl Clay Sci 148:48–55

    Article  CAS  Google Scholar 

  189. Rawtani D et al (2017) Development of a novel ‘nanocarrier’ system based on Halloysite nanotubes to overcome the complexation of ciprofloxacin with iron: an in vitro approach. Appl Clay Sci 150:293–302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Scholarship Consul (CSC) grant (No. 2013012007), Independent innovation fund project of agricultural science and technology of Jiangsu Province in 2017(No CX(17)1003), Guizhou Provincial Science and Technology Department Joint Fund Project (Qian Kehe LH word [2016] No. 7076), the Project Funded by Research Project of Environment Protection Department of Jiangsu Province (Grant No.2015026) and Chinese College Students Innovation Project for the R&D of Novel Drugs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meriem Fizir or Hua He.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fizir, M., Dramou, P., Dahiru, N.S. et al. Halloysite nanotubes in analytical sciences and in drug delivery: A review. Microchim Acta 185, 389 (2018). https://doi.org/10.1007/s00604-018-2908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2908-1

Keywords

Navigation