Skip to main content
Log in

Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

This minireview outlines the main scientific directions in the research of inorganic nanotubes (INT) and fullerene-like (IF) nanoparticles from layered compounds, in recent years. In particular, this review describes to some detail the progress in the synthesis of new nanotubes, including those from misfit compounds; core-shell and the successful efforts to scale-up the synthesis of WS2 multiwall nanotubes. The high-temperature catalytic growth of nanotubes, via solar ablation is discussed as well. Furthermore, the doping of the IF-MoS2 nanoparticles and its influence on the physiochemical properties of the nanoparticles, including their interesting tribological properties are briefly discussed. Finally, the numerous applications of these nanoparticles as superior solid lubricants and for reinforcing variety of polymers are discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. R. Tenne, L. Margulis, M. Genut, and G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide, Nature, 1992, 360(6403): 444

    Article  ADS  Google Scholar 

  2. L. Margulis, G. Salitra, R. Tenne, and M. Talianker, Nested fullerene-like structures, Nature, 1993, 365(6442): 113

    Article  ADS  Google Scholar 

  3. Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes, Science, 1995, 267(5195): 222

    Article  ADS  Google Scholar 

  4. M. Homyonfer, B. Alperson, Yu. Rosenberg, L. Sapir, S. R. Cohen, G. Hodes, and R. Tenne, Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy, J. Am. Chem. Soc., 1997, 119(11): 2693

    Article  Google Scholar 

  5. R. Rosentsveig, A. Margolin, Y. Feldman, R. Popovitz-Biro, and R. Tenne, WS2 nanotube bundles and foils, Chem. Mater., 2002, 14(2): 471

    Article  Google Scholar 

  6. Y. Feldman, A. Zak, R. Popovitz-Biro, and R. Tenne, New reactor for production of tungsten disulfide hollow onionlike (inorganic fullerene-like) nanoparticles, Solid State Sci., 2000, 2(6): 663

    Article  ADS  Google Scholar 

  7. Y. Q. Zhu, W. K. Hsu, N. Grobert, B. H. Chang, M. Terrones, H. Terrones, H. W. Kroto, D. R. M. Walton, and B. Q. Wei, Production of WS2 nanotubes, Chem. Mater., 2000, 12(5): 1190

    Article  Google Scholar 

  8. H. A. Therese, J. Li, U. Kolb, and W. Tremel, Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route, Solid State Sci., 2005, 7(1): 67

    Article  ADS  Google Scholar 

  9. A. Rothschild, J. Sloan, and R. Tenne, Growth of WS2 nanotubes phases, J. Am. Chem. Soc., 2000, 122(21): 5169

    Article  Google Scholar 

  10. A. Zak, L. Sallacan-Ecker, A. Margolin, M. Genut, and R. Tenne, Insight into the growth mechanism of WS2 nanotubes in the scaled-up fluidized-bed reactor, Nano, 2009, 4(02): 91

    Article  Google Scholar 

  11. A. Zak, L. Sallacan Ecker, R. Efrati, L. Drangai, N. Fleischer, and R. Tenne, Large-scale synthesis of WS2 multiwall nanotubes and their dispersion, an update, Sensors & Transducers J., 2011, 12: 1

    Google Scholar 

  12. E. Zohar, S. Baruch, M. Shneider, H. Dodiuk, S. Kenig, H. D. Wagner, A. Zak, A. Moshkovith, L. Rapoport, and R. Tenne, The mechanical and tribological properties of epoxy nanocomposites with WS2 nanotubes, Sensors & Transducers J., 2011, 12: 53

    Google Scholar 

  13. M. Naffakh, M. Remskar, C. Marco, and M. A. Gómez-Fatou,, Dynamic crystallization kinetics and nucleation parameters of a new generation of nanocomposites based on isotactic polypropylene and MoS2 inorganic nanotubes, J. Phys. Chem. B, 2011, 115(12): 2850

    Article  Google Scholar 

  14. K. Tiong, P. Liao, C. Ho, and Y. Huang, Growth and characterization of rhenium-doped MoS2 single crystals, J. Cryst. Growth, 1999, 205(4): 543

    Article  ADS  Google Scholar 

  15. P. Yen, Y. Huang, and K. Tiong, The growth and characterization of rhenium-doped WS2 single crystals, J. Phys.: Condens. Matter, 2004, 16(12): 2171

    ADS  Google Scholar 

  16. L. Yadgarov, R. Rosentsveig, G. Leitus, A. Albu-Yaron, A. Moshkovith, V. Perfilyev, R. Vasic, A. I. Frenkel, A. N. Enyashin, G. Seifert, L. Rapoport, and R. Tenne, Controlled doping of MS2 (M=W, Mo) nanotubes and fullerene-like nanoparticles, Angew. Chem. Int. Ed., 2012, 51(5): 1148

    Article  Google Scholar 

  17. L. Yadgarov, D. G. Stroppa, R. Rosentsveig, R. Ron, A. N. Enyashin, L. Houben, and R. Tenne, Investigation of rhenium-doped MoS2 nanoparticles with fullerene-like structure, Z. Anorg. Allg. Chem., 2012, 638(15): 2610

    Article  Google Scholar 

  18. L. Rapoport, A. Moshkovich, V. Perfiliev, A. Laikhtman, I. Lapsker, L. Yadgarov, R. Rosentsveig, and R. Tenne, High lubricity of Re-doped fullerene-like MoS2 nanoparticles, Tribol. Lett., 2012, 45(2): 257

    Article  Google Scholar 

  19. L. Yadgarov, V. Petrone, R. Rosentsveig, Y. Feldman, R. Tenne, and A. Senatore, Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in bound ary, mixed and elasto-hydrodynamic lubrication conditions, Wear, 2013, 297(1–2): 1103

    Article  Google Scholar 

  20. R. Rosentsveig, A. Margolin, A. Gorodnev, R. Popovitz-Biro, Y. Feldman, L. Rapoport, G. R. Samorodnitzky-Naveh, and R. Tenne, Synthesis of fullerene-like MoS2 nanoparticles and their tribological behavior, J. Mater. Chem., 2009, 19(25): 4368

    Article  Google Scholar 

  21. Q. C. Sun, L. Yadgarov, R. Rosentsveig, G. Seifert, R. Tenne, and J. L. Musfeldt, Observation of a Burstein-Moss shift in rhenium-doped MoS2 nanoparticles, ACS Nano, 2013, 7(4): 3506

    Article  Google Scholar 

  22. A. M. Morales and C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279(5348): 208

    Article  ADS  Google Scholar 

  23. A. Yella, E. Mugnaioli, M. Panthofer, H. A. Therese, U. Kolb, and W. Tremel, Bismuth-catalyzed growth of SnS2 nanotubes and their stability, Angew. Chem. Int. Ed., 2009, 48(35): 6426

    Article  Google Scholar 

  24. O. Brontvein, D. G. Stroppa, R. Popovitz-Biro, A. Albu-Yaron, M. Levy, D. Feuerman, L. Houben, R. Tenne, and J. M. Gordon, New high-temperature Pb-catalyzed synthesis of inorganic nanotubes, J. Am. Chem. Soc., 2012, 134(39): 16379

    Article  Google Scholar 

  25. B. Alperson, M. Homyonfer, and R. Tenne, Photoelectrochemical studies with inorganic cage structures of metal dichalcogenides, J. Electroanal. Chem., 1999, 473(1–2): 186

    Article  Google Scholar 

  26. S. Y. Hong, R. Popovitz-Biro, Y. Prior, and R. Tenne, Synthesis of SnS2/SnS fullerene-like nanoparticles: A superlattice with polyhedral shape, J. Am. Chem. Soc., 2003, 125(34): 10470

    Article  Google Scholar 

  27. G. Radovsky, R. Popovitz-Biro, M. Staiger, K. Gartsman, C. Thomsen, T. Lorenz, G. Seifert, and R. Tenne, Synthesis of copious amounts of SnS2 and SnS2/SnS nanotubes with ordered superstructures, Angew. Chem. Int. Ed., 2011, 50(51): 12316

    Article  Google Scholar 

  28. G. Radovsky, R. Popovitz-Biro, and R. Tenne, Study of tubular structures of the misfit layered compound SnS2/SnS, Chem. Mater., 2012, 24(15): 3004

    Article  Google Scholar 

  29. A. Meerschaut, Misfit layer compounds, Curr. Opin. Solid State & Mater. Sci., 1996, 1(2): 250

    Article  ADS  Google Scholar 

  30. J. Rouxel and A. Meerecheut, Misfit layer compounds (MX)n(TX2)m [M= Sn, Pb, Bi, Rare earth; T= Transition metal; X=S, Se; 1.08 < n <1.25; m=1, 2, Mol. Cryst. Liq. Cryst. Sci. Tec. A, 1994, 244(1): 343

    Article  Google Scholar 

  31. G. A. Wiegers and A. Meerscheut, Misfit layer compounds (MS)nTS2 (M=Sn, Pb, Bi, Rare earth metals; T=Nb, Ta, Ti, V, Cr; 1.08 < n <1.23): Structures and physical properties, Mater. Sci. Forum, 1992, 100–101: l01

    Google Scholar 

  32. D. Bernaerts, S. Amelinckx, G. Van Tendeloo, and J. Van Landuyt, Microstructure and formation mechanism of cylindrical and conical scrolls of the misfit layer compounds PbNb n S2n+1, J. Cryst. Growth, 1997, 172(3–4): 433

    Article  ADS  Google Scholar 

  33. E. Philp, J. Sloan, A. I. Kirkland, R. R. Meyer, S. Friedrichs, J. L. Hutchison, and M. L. H. Green, An encapsulated helical one-dimensional cobalt iodide nanostructure, Nat. Mater., 2003, 2(12): 788

    Article  ADS  Google Scholar 

  34. R. Kreizman, S. Y. Hong, J. Sloan, R. Popovitz-Biro, A. Albu-Yaron, G. Tobias, B. Ballesteros, B. G. Davis, M. L. H. Green, and R. Tenne, Core-shell PbI2@WS2 inorganic nanotubes from capillary wetting, Angew. Chem. Int. Ed., 2009, 48(7): 1230

    Article  Google Scholar 

  35. R. Kreizman, A. N. Enyashin, F. L. Deepak, A. Albu-Yaron, R. Popovitz-Biro, G. Seifert, and R. Tenne, Synthesis of core-shell inorganic nanotubes, Adv. Funct. Mater., 2010, 20(15): 2459

    Article  Google Scholar 

  36. L. Rapoport, Yu. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen, and R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants, Nature, 1997, 387: 791

    Article  ADS  Google Scholar 

  37. VA237 and VA267 bearings in SKF catalog: http://www.skf.com/group/products/bearings-units-housings/engineeredproducts/skf-drylube-bearings/designation-system/index.html

  38. A. R. Adini, M. Redlich, and R. Tenne, Medical applications of inorganic fullerene-like nanoparticles, J. Mater. Chem., 2011, 21(39): 15121

    Article  Google Scholar 

  39. A. M. Díez-Pascual, M. Naffakh, C. Marco, and G. Ellis,, Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles, J. Phys. Chem. B, 2012, 116(27): 7959

    Article  Google Scholar 

  40. A. M. Díez-Pascual, M. Naffakh, C. Marco, and G. Ellis,, Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles, Composites: Part A, 2012, 43: 603

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshef Tenne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenne, R. Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles. Front. Phys. 9, 370–377 (2014). https://doi.org/10.1007/s11467-013-0326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0326-8

Keywords

Navigation