Skip to main content

Advertisement

Log in

Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The 6-kDa early secretory antigenic target referred to as ESAT-6 is a virulence factor secreted by Mycobacterium tuberculosis (MTB). This work describes a voltammetric aptasensor for ultrasensitive detection of ESAT-6. Reduced graphene oxide doped with metal-organic framework (MOF-rGO) was deposited on a glassy carbon electrode (GCE). This increases the immobilization of electroactive Toluidine Blue (TB) and facilitates the electron transfer from TB to the modified GCE. Platinum/gold core/shell (Pt@Au) nanoparticles were used to assemble thiolated ESAT-6 binding aptamer (EBA) on a modified electrode and to further amplify the response to TB. The modified GCE, typically operated at −0.36 V (vs. SCE), has a linear response in 1.0 × 10−4 to 2.0 × 102 ng⋅mL-1 ESAT-6 concentration range, and the limit of detection (LOD) for ESAT-6 is as low as 3.3 × 10−5 ng⋅mL-1. It exhibits satisfactory specificity and reproducibility when analyzing spiked human serum.

Schematic presentation of a voltammetric aptasensor for Mycobacterium tuberculosis antigen ESAT-6 using a glassy carbon electrode modified with reduced graphene oxide (rGO) and a metal-organic framework (MOF). The limit of detection for ESAT-6 is as low as 3.3 × 10−5 ng/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zumla A, George A, Sharma V, Herbert R, BMo I, Oxley A, Oliver M (2015) The WHO 2014 global tuberculosis report--further to go. Lancet Glob Health 3(1):e10–e12

    Article  PubMed  Google Scholar 

  2. Golub JE, Bur S, Cronin WA, Gange S, Baruch N, Comstock GW, Chaisson RE (2006) Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis 10(1):24–30

    CAS  PubMed  Google Scholar 

  3. Elmasry S, Elkady I, Zaghloul MH, Albadrawey MK (2008) Rapid and simple detection of a mycobacterium circulating antigen in serum of pulmonary tuberculosis patients by using a monoclonal antibody and Fast-Dot-ELISA. Clin Biochem 41(3):145–151

    Article  CAS  Google Scholar 

  4. Slogotskaya L, Bogorodskaya E, Sentchichina O, Nikitina G, Litvinov V, Seltsovsky P, Nikolenko N, Kudlay D (2016) Detection TB infection using a skin tests with tuberculin and allergen recombinant (CFP-10-ESAT-6) in children and adolescents in Moscow in 2015. Eur Respir J 48(suppl 60):OA3038

    Google Scholar 

  5. Wolf H, Mendez M, Gilman RH, Sheen P, Soto G, Velarde AK, Zimic M, Escombe AR, Montenegro S, Oberhelman RA (2008) Diagnosis of pediatric pulmonary tuberculosis by stool PCR. Am J Trop Med Hyg 79(6):893–898

    Article  Google Scholar 

  6. Sarmiento OL, Weigle KA, Alexander J, Weber DJ, Miller WC (2003) Assessment by meta-analysis of PCR for diagnosis of smear-negative pulmonary tuberculosis. J Clin Microbiol 41(7):3233–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang SL, Zhao JW, Sun ZQ, Yang EZ, Yan JH, Qi Z, Zhang GL, Zhang HM, Qi YM, Wang HH (2009) Development and evaluation of a novel multiple-antigen ELISA for serodiagnosis of tuberculosis. Tuberculosis 89(4):278–284

    Article  CAS  PubMed  Google Scholar 

  8. Doherty TM, Demissie A, Menzies D, Andersen P, Rook G, Zumla A (2005) Effect of sample handling on analysis of cytokine responses to Mycobacterium tuberculosis in clinical samples using ELISA, ELISPOT and quantitative PCR. J Immunol Methods 298(1–2):129–141

    Article  CAS  PubMed  Google Scholar 

  9. Goletti D, Petruccioli E, Joosten SA, Ottenhoff THM (2016) Tuberculosis biomarkers: from diagnosis to protection. Infect Dis Rep 8(2):24–32

    Article  Google Scholar 

  10. Tang XL, Zhou YX, Wu SM, Pan Q, Xia B, Zhang XL (2014) CFP10 and ESAT6 aptamers as effective mycobacterial antigen diagnostic reagents. J Infect 69(6):569–580

    Article  PubMed  Google Scholar 

  11. Pollock JM, Andersen P (1997) The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis. J Infect Dis 175(5):1251–1254

    Article  CAS  PubMed  Google Scholar 

  12. Hill PC, Jacksonsillah D, Fox A, Franken KL, Lugos MD, Jeffries DJ, Donkor SA, Hammond AS, Adegbola RA, Ottenhoff TH (2005) ESAT-6/CFP-10 fusion protein and peptides for optimal diagnosis of mycobacterium tuberculosis infection by ex vivo enzyme-linked immunospot assay in the Gambia. J Clin Microbiol 43(5):2070–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR (2004) Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51(2):359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diouani MF, Ouerghi O, Refai A, Belgacem K, Tlili C, Laouini D, Essafi M (2016) Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Mater Sci Eng C 74:465–470

    Article  CAS  Google Scholar 

  15. Sepulveda D, Aroca MA, Varela A, Del PP, Osma JF (2017) Bioelectrochemical detection of Mycobacterium tuberculosis ESAT-6 in an antibody-based biomicrosystem. Sensors 17(10):2178

    Article  CAS  Google Scholar 

  16. Cho EJ, Lee JW, Ellington AD (2009) Applications of Aptamers as sensors. Annu Rev Anal Chem 2(1):241–264

    Article  CAS  Google Scholar 

  17. Famulok M, Mayer G (2011) Aptamer modules as sensors and detectors. Acc Chem Res 44(12):1349–1358

    Article  CAS  PubMed  Google Scholar 

  18. Bai L, Chai Y, Pu X, Yuan R (2014) A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale 6(5):2902–2908

    Article  CAS  PubMed  Google Scholar 

  19. Wang G, Su X, Xu Q, Xu G, Lin J, Luo X (2017) Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide. Biosens Bioelectron 101:129–134

    Article  CAS  PubMed  Google Scholar 

  20. Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y (2012) Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials 33(4):1090–1096

    Article  CAS  PubMed  Google Scholar 

  21. Bai L, Chen Y, Bai Y, Chen Y, Zhou J, Huang A (2017) Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 133:11–19

    Article  CAS  PubMed  Google Scholar 

  22. Li WH, Ding K, Tian HR, Yao MS, Nath B, Deng WH, Wang Y, Xu G (2017) Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv Funct Mater 27(27):1702067

    Article  CAS  Google Scholar 

  23. Sheberla D, Bachman JC, Elias JS, Sun CJ, Yang SH, Dincă M (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220–224

    Article  CAS  PubMed  Google Scholar 

  24. Ke F, Wang L, Zhu J (2015) Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability. Nanoscale 7(3):1201–1208

    Article  CAS  PubMed  Google Scholar 

  25. Tang Z, He J, Chen J, Niu Y, Zhao Y, Zhang Y, Yu C (2018) A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe-MOFs@AuNPs nanocomposites and a novel AuPt-methylene blue nanorod. Biosens Bioelectron 101:253–259

    Article  CAS  PubMed  Google Scholar 

  26. Guo Y, Sun X, Liu Y, Wang W, Qiu H, Gao J (2012) One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 50(7):2513–2523

    Article  CAS  Google Scholar 

  27. Wang Y, Hu S (2006) A novel nitric oxide biosensor based on electropolymerization poly(toluidine blue) film electrode and its application to nitric oxide released in liver homogenate. Biosens Bioelectron 22(1):10–17

    Article  CAS  PubMed  Google Scholar 

  28. Jia H, Chang G, Shu H, Xu M, Wang X, Zhang Z, Liu X, He H, Wang K, Zhu R (2017) Pt nanoparticles modified Au dendritic nanostructures: facile synthesis and enhanced electrocatalytic performance for methanol oxidation. Int J Hydrog Energy 42(34):22100–22107

    Article  CAS  Google Scholar 

  29. Ataeeesfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@Pt nanoparticles with Au Core and nanostructured Pt Shell toward highly active Electrocatalysts. Chem Mater 22(23):6310–6318

    Article  CAS  Google Scholar 

  30. Thakur H, Kaur N, Sabherwal P, Sareen D, Prabhakar N (2017) Aptamer based voltammetric biosensor for the detection of Mycobacterium tuberculosis antigen MPT64. Microchim Acta 184(7):1–8

    Article  CAS  Google Scholar 

  31. Thakur H, Kaur N, Sareen D, Prabhakar N (2017) Electrochemical determination of M. tuberculosis antigen based on Poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Talanta 171:115–123

    Article  CAS  PubMed  Google Scholar 

  32. Ma Z, Qin L, Wang Y (2007) Screening and affinity analysis of aptamers to ESAT-6 protein from Mycobacterium tuberculosis. Chin J Clin 1:45–48

    Google Scholar 

  33. Ma Z, He F, Qin L, Hu Z, Jiang Q (2011) Selection of aptamers to CFP10-ESAT6 protein from Mycobacterium tuberculosis. J Mol Diagn Ther 3(6):377–380

    Google Scholar 

  34. Chen J, Yu C, Zhao Y, Niu Y, Zhang L, Yu Y, Wu J, He J (2016) A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. Biosens Bioelectron 91:892–899

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Hu Q, Meng Y, Jin Z, Fang Z, Fu Q, Gao W, Xu L, Song Y, Lu F (2018) Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J Hazard Mater 353:151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (81601856), the Third Batch of Young Backbone Teachers Funding Program in Colleges and Universities of Chongqing City ([2016] No. 53), Funds for Young Science and Technology Talent Cultivation Plan of Chongqing City (cstc2014kjrc-qnrc00004) and Fundamental and Advanced Research Projects of Chongqing City (cstc2016jcyjA0275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Bai.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3.23 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yuan, Y., Chen, Y. et al. Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Microchim Acta 185, 379 (2018). https://doi.org/10.1007/s00604-018-2884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2884-5

Keywords

Navigation