Skip to main content
Log in

Packed hybrids of gold nanoparticles and layered double hydroxide nanosheets for microextraction of triazine herbicides from maize

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This work describes a nanohybrid material consisting of gold nanoparticles (AuNPs) and nanosheets of layered double hydroxides (NLDHs) of Mg(II) and Al(III). Mono-disperse AuNPs were immobilized on the surface of the LDHs via Au-O bonding. The nanohybrid sorbent was packed in an organic filter along with a syringe and applied to the microextraction of triazine herbicides with the help of an injection pump. The collected hexane eluate was concentrated and directly injected into a HPLC column for quantification. The effects of the amount of Au/LDH nanohydrobrids, type, flow rate, volume of washing and eluting solvent were optimized. The method was validated by detecting four triazine herbicides (prometryn, atrazine, terbumeton and secbumeton) in spiked maize. The limits of detection range between 35 and 108 pg g−1. The relative standard deviations range from 1.0–6.9% for repeatability and 4.6–7.8% for reproducibility (for n = 5).

Schematic presentation of a nanohybrid material consisting of gold nanoparticles and nanosheets of layered double hydroxides of Mg(II) and Al(III) (Au/LDH) for use as an adsorbent for microextraction in a packed syringe. Organic filter heads were used as the container of Au/LDHs nanohybrids, and were connected with the syringes installed on the injection pump for the semi-automatic microextraction and preconcentration of triazines in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Regulation (EC) NO 396/2005 Of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC

  2. Rejczak T, Tuzimski T (2015) Recent trends in sample preparation and liquid chromatography/mass spectrometry for pesticide residue analysis in food and related matrixes. J AOAC Int 98:1143–1162

    Article  CAS  PubMed  Google Scholar 

  3. Tuzimski T, Rejczak T (2016) Application of HPLC–DAD after SPE/QuEChERS with ZrO2-based sorbent in d-SPE clean-up step for pesticide analysis in edible oils. Food Chem 190:71–79

    Article  CAS  PubMed  Google Scholar 

  4. Zhong Q, Su P, Zhang Y, Wang RY, Yang Y (2012) In-situ ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction of triazine herbicides. Microchim Acta 178:341–347

    Article  CAS  Google Scholar 

  5. Camel V (1997) The determination of pesticide residues and metabolites using supercritical fluid extraction. Trends Anal Chem 16:351–369

    Article  CAS  Google Scholar 

  6. Zhang WF, Zhang YH, Jiang Q, Zhao WJ, Yu AJ, Chang H, Lu XM, Xie FW, Ye BX, Zhang SS (2016) Tetraazacalix[2]arence[2]triazine coated Fe3O4/SiO2 cagnetic nanoparticles for simultaneous dispersive solid phase extraction and determination of trace multitarget analytes. Anal Chem 88:10523–10532

    Article  CAS  PubMed  Google Scholar 

  7. Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. Trends Anal Chem 27:497–511

    Article  CAS  Google Scholar 

  8. Moein MM, Abdel-Rehim A, Abdel-Rehim M (2015) Microextraction by packed sorbent (MEPS). Trends Anal Chem 67:34–44

    Article  CAS  Google Scholar 

  9. González Paredes RM, García Pinto C, Pérez Pavón JL, Moreno Cordero B (2014) In situ derivatization combined to automated microextraction by packed sorbents for the determination of chlorophenols in soil samples by gas chromatography mass spectrometry. J Chromatogr A 1359:52–59

    Article  CAS  PubMed  Google Scholar 

  10. Fumes BH, Andrade FN, dos ÁJ, Neto S, Lancas FM (2016) Determination of pesticides in sugarcane juice employing microextraction by packed sorbent followed by gas chromatography and mass spectrometry. J Sep Sci 39:2823–2830

    Article  CAS  PubMed  Google Scholar 

  11. Bagheri H, Alipour N, Ayazi Z (2012) Multiresidue determination of pesticides from aquatic media using polyaniline nanowires network as highly efficient sorbent for microextraction in packed syringe. Anal Chim Acta 740:43–49

    Article  CAS  PubMed  Google Scholar 

  12. Andrade FN, Santos-Neto ÁJ, Lancas FM (2014) Microextraction by packed sorbent liquid chromatography with time-of-flight mass spectrometry of triazines employing a molecularly imprinted polymer. J Sep Sci 37:3150–3156

    Article  CAS  PubMed  Google Scholar 

  13. de Souza ID, Domingues DS, Queiroz MEC (2015) Hybrid silica monolith for microextraction by packed sorbent to determine drugs from plasma samples by liquid chromatography-tandem mass spectrometry. Talanta 140:166–175

    Article  CAS  PubMed  Google Scholar 

  14. Seftel EM, Niarchos M, Vordos N, Nolan JW, Mertens M, Mitropoulos AC, Vansant EF, Cool P (2015) LDH and TiO2/LDH-type nanocomposite systems: a systematic study on structural characteristics. Microporous Mesoporous Mater 203:208–215

    Article  CAS  Google Scholar 

  15. Pavan PC, Crepaldi EL, Valim JB (2000) Sorption of anionic surfactants on layered double hydroxides. J Colloid Interface Sci 229:346–352

    Article  CAS  PubMed  Google Scholar 

  16. El Mouzdahir Y, Elmchaouri A, Mahboub R, ElAnssari A, Gil A, Korili SA, Vicente MA (2007) Interaction of stevensite with cd in aqueous dispersions. Appl Clay Sci 35:47

    Article  CAS  Google Scholar 

  17. Fang LP, Hou JW, Xu CH, Wang YR, Li J, Xiao F, Wang DS (2018) Enhanced removal of natural organic matters by calcined mg/Al layered double hydroxide nanocrystalline particles: adsorption, reusability and mechanism studies. Appl Surf Sci 442:45–53

    Article  CAS  Google Scholar 

  18. Cavani F, Trifiro F, Vaceari A (1991) Hydrotalcite-type anionic clays: preparation, properties and application. J Catal Today 11:173–301

    Article  CAS  Google Scholar 

  19. Shumaker JL, Crofcheck C, Tackett SA (2008) Biodiesel synthesis using calcined layered double hydroxide catalysis. J Appl Catal B-Environ 82:120–130

    Article  CAS  Google Scholar 

  20. Huang G, Jiang L, Wang D, Chen J, Li Z, Ma S (2016) Intercalation of thiacalix[4]arene anion via calcined/restored reaction into LDH and efficient heavy metal capture. J Mol Liq 220:346–353

    Article  CAS  Google Scholar 

  21. Li B, Zhang Y, Zhou X, Liu Z, Liu Q, Li X (2016) Different dye removal mechanisms between monodispersed and uniform hexagonal thin plate-like MgAl–CO32--LDH and its calcined product in efficient removal of Congo red from water. J Alloys Compd 673:265–271

    Article  CAS  Google Scholar 

  22. Li Z, Yang B, Zhang S, Wang B, Xue B (2014) A novel approach to hierarchical sphere-like ZnAl-layered double hydroxides and their enhanced adsorption capability. J Mater Chem A 2:10202–10210

    Article  CAS  Google Scholar 

  23. Sansuk S, Srijaranai S, Srijaranai S (2016) A new approach for removing anionic organic dyes from wastewater based on electrostatically driven assembly. Environ Sci Technol 50:6477–6484

    Article  CAS  PubMed  Google Scholar 

  24. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  25. Yue GZ, Su S, Li N, Shuai MB, Lai XC, Astruc D, Zhao PX (2016) Gold nanoparticles as sensors in the colorimetric and fluorescence detection of chemical warfare agents. Coordin Chem Rev 311:75–84

    Article  CAS  Google Scholar 

  26. Wang PL, Lin ZY, Su XO, Tang ZY (2017) Application of au based nanomaterials in analytical science. Nano Today 12:64–97

    Article  CAS  Google Scholar 

  27. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  28. Rodriguez JA, Dvorak J, Jirsak T, Liu G, Hrbek J, Aray Y, Gonzalez C (2003) Coverage effects and the nature of the metal-sulfur bond in S/au(III): highresolution photoemission and density-functional studies. J Am Chem Soc 125:276–285

    Article  CAS  PubMed  Google Scholar 

  29. Huang YF, Chang HT (2006) Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 78:1485–1493

    Article  CAS  PubMed  Google Scholar 

  30. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  31. Li XP, Sun Y, Sun Q, Liang L, Piao HL, Jiang YX, Yu AM, Song DQ, Wang XH (2017) Ionic-liquid-functionalized zinc oxide nanoparticles for the solid-phase extraction of triazine herbicides in corn prior to high-performance liquid chromatography analysis. J Sep Sci 00:1–7

    Google Scholar 

  32. Geng HR, Miao SS, Jin SF, Yang H (2015) A newly developed molecularly imprinted polymer on the surface of TiO2 for selective extraction of triazine herbicides residues in maize, water, and soil. Anal Bioana Chem 407:8803–8812

    Article  CAS  Google Scholar 

  33. Mou RX, Chen MX, Cao ZY, Zhu ZW (2011) Simultaneous determination of triazine herbicides in rice by high-performance liquid chromatography coupled with high resolution and high mass accuracy hybrid linear ion trap-orbitrap mass spectrometry. Anal Chim Acta 706:149–156

    Article  CAS  PubMed  Google Scholar 

  34. Wang YP, Sun Y, Xu B, Li XP, Wang XH, Zhang HQ, Song DQ (2015) Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds. Anal Chim Acta 888:67–74

    Article  CAS  PubMed  Google Scholar 

  35. Cacho C, Martín-Esteban TEA, Ayala D, Perez-Conde C (2006) Semi-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples. J Chromatogr A 1114:255–262

    Article  CAS  PubMed  Google Scholar 

  36. Li N, Wu LJ, Nian L, Song Y, Lei L, Yang X, Wang K, Wang ZB, Zhang LY, Zhang HQ, Yu AM, Zhang ZW (2015) Dynamic microwave assisted extraction coupled with dispersive micro-solid-phase extraction of herbicides in soybeans. Talanta 142:43–50

    Article  CAS  PubMed  Google Scholar 

  37. Fresco-Cala B, Cárdena S, Valcárcel M (2016) Improved microextraction of selected triazines using polymer monoliths modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 183:465–474

    Article  CAS  Google Scholar 

  38. Safari M, Yamini Y, Tahmasebi E, Ebrahimpour B (2016) Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchim Acta 183:203–210

    Article  CAS  Google Scholar 

  39. Đurović RD, ĐorĐević TM, Šantrić LR, GaŠić SM, Ignjatović LM (2010) Headspace solid phase micrpextraction method for determination of triazine and organophosphorus pesticides in soil. J Environ Sci Health B 45:626–632

    Article  CAS  PubMed  Google Scholar 

  40. Đurović-PejČev R, ĐorĐević T, Bursić V (2016) Determination of multi-class herbicides in soil by liquid-solid extraction coupled with headspace solid microextraction method. J Serb Chem Soc 81:923–934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Special-funded Programme on National Natural Science Foundation of China (Nos. 21405057 and 21207047), Science and Technology Developing Foundation of Jilin Province of China (Nos. 201701011106JC, 20160623025TC and 20160204010GX), and Open Funds of the State Key Laboratory of Electroanalytical Chemistry (No. SKLEAC201704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, Y., Yuan, L. et al. Packed hybrids of gold nanoparticles and layered double hydroxide nanosheets for microextraction of triazine herbicides from maize. Microchim Acta 185, 336 (2018). https://doi.org/10.1007/s00604-018-2862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2862-y

Keywords

Navigation