Skip to main content
Log in

Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a method for the microextraction of the four model triazine herbicides cyanazine, simazine, prometon and propazine from water samples. It is based on the use of the supramolecular solvent decanoic acid and magnetic nanoparticles (NPs) which are applied to magnetically separate the decanoic acid micelles containing the extracted herbicides. Following desorption of the coating from the magnetic NPs with methanol, the solution was submitted to HPLC with UV detection. The pH values, amount of decanoic acid and sorbent, sample temperature, stirring rate, salt addition, and extraction time were optimized. Under optimal conditions, the preconcentration factors and relative recoveries for the four herbicides range from 183 to 256 and from 90.3 to 105.0 %, respectively. The analytical ranges extend from 0.3 to 250 μg∙mL‾1, and the limits of detection (LODs) are between 0.3 and 0.5 μg∙mL‾1 (based on an S/N ratio of 3). The precision of the method, expressed as relative standard deviation for extraction and determination of the 100 μg∙mL‾1 analytes in the samples solution is in the range from 4.6 to 6.5 %. We also critically compare the present method with various others.

A microextraction method based on supramolecular solvent followed with magnetic nanoparticles separation was applied to the extraction and preconcentration of four triazine herbicides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dean JR, Wade G, Barnabas IJ (1996) Determination of triazine herbicides in environmental samples. J Chromatogr A 733(1–2):295–335. doi:10.1016/0021-9673(95)00691-5

    Article  CAS  Google Scholar 

  2. Hu X, Hu Y, Li G (2007) Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography. J Chromatogr A 1147(1):1–9. doi:10.1016/j.chroma.2007.02.037

    Article  CAS  Google Scholar 

  3. Sanchez-Ortega A, Unceta N, Gómez-Caballero A, Sampedro MC, Akesolo U, Goicolea MA, Barrio RJ (2009) Sensitive determination of triazines in underground waters using stir bar sorptive extraction directly coupled to automated thermal desorption and gas chromatography–mass spectrometry. Anal Chim Acta 641(1–2):110–116. doi:10.1016/j.aca.2009.03.044

    Article  CAS  Google Scholar 

  4. Djozan D, Ebrahimi B (2008) Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Anal Chim Acta 616(2):152–159. doi:10.1016/j.aca.2008.04.037

    Article  CAS  Google Scholar 

  5. Benfield CA, Chilwell ED (1964) The determination of some triazine herbicides by gas–liquid chromatography with particular reference to atraton in soil. Analyst 89(1060):475–479. doi:10.1039/AN9648900475

    Article  CAS  Google Scholar 

  6. Zambonin CG, Palmisano F (2000) Determination of triazines in soil leachates by solid-phase microextraction coupled to gas chromatography–mass spectrometry. J Chromatogr A 874(2):247–255. doi:10.1016/S0021-9673(99)01267-4

    Article  CAS  Google Scholar 

  7. Zhang XZ, Ma XD, Zhang WG, Lin J, Li CJ (2009) Determination of sixteen triazine herbicide residues in soil by gas chromatography-chemical ionization tandem mass spectrometry. Fenxi Huaxue 36(6):781–787

    Google Scholar 

  8. Carabias-Martínez R, Rodríguez-Gonzalo E, Miranda-Cruz E, Domínguez-Álvarez J, Hernández-Méndez J (2006) Comparison of a non-aqueous capillary electrophoresis method with high performance liquid chromatography for the determination of herbicides and metabolites in water samples. J Chromatogr A 1122(1–2):194–201. doi:10.1016/j.chroma.2006.04.017

    Article  Google Scholar 

  9. Merino F, Rubio S, Pérez-Bendito D (2005) Supramolecular systems-based extraction-separation techniques coupled to mass spectrometry. J Sep Sci 28(14):1613–1627. doi:10.1002/jssc.200500161

    Article  CAS  Google Scholar 

  10. Zhong Q, Su P, Zhang Y, Wang R, Yang Y (2012) In-situ ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction of triazine herbicides. Microchim Acta 178(3–4):341–347. doi:10.1007/s00604-012-0847-9

    Article  CAS  Google Scholar 

  11. Sabik H, Jeannot R (1998) Determination of organonitrogen pesticides in large volumes of surface water by liquid–liquid and solid-phase extraction using gas chromatography with nitrogen–phosphorus detection and liquid chromatography with atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 818(2):197–207. doi:10.1016/S0021-9673(98)00555-X

    Article  CAS  Google Scholar 

  12. Ma WT, Fu KK, Cai Z, Jiang GB (2003) Gas chromatography/mass spectrometry applied for the analysis of triazine herbicides in environmental waters. Chemosphere 52(9):1627–1632. doi:10.1016/S0045-6535(03)00502-2

    Article  CAS  Google Scholar 

  13. Matsui J, Okada M, Tsuruoka M, Takeuchi T (1997) Solid-phase extraction of a triazine herbicide using a molecularly imprinted synthetic receptor. Anal Commun 34(3):85–87. doi:10.1039/A700103G

    Article  CAS  Google Scholar 

  14. Basheer C, Lee HK (2004) Hollow fiber membrane-protected solid-phase microextraction of triazine herbicides in bovine milk and sewage sludge samples. J Chromatogr A 1047(2):189–194. doi:10.1016/j.chroma.2004.06.130

    Article  CAS  Google Scholar 

  15. Aziz-Zanjani M, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181(11–12):1169–1190. doi:10.1007/s00604-014-1265-y

    Article  CAS  Google Scholar 

  16. Zhao G, Song S, Wang C, Wu Q, Wang Z (2011) Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Anal Chim Acta 708(1–2):155–159. doi:10.1016/j.aca.2011.10.006

    Article  CAS  Google Scholar 

  17. Shen G, Lee HK (2001) Hollow fiber-protected liquid-phase microextraction of triazine herbicides. Anal Chem 74(3):648–654. doi:10.1021/ac010561o

    Article  Google Scholar 

  18. Cheng J, Liu M, Zhang X, Ding L, Yu Y, Wang X, Jin H, Zhang H (2007) Determination of triazine herbicides in sheep liver by microwave-assisted extraction and high performance liquid chromatography. Anal Chim Acta 590(1):34–39. doi:10.1016/j.aca.2007.03.017

    Article  CAS  Google Scholar 

  19. Farajzadeh M, Sorouraddin S, Mogaddam M (2014) Liquid phase microextraction of pesticides: a review on current methods. Microchim Acta 181(9–10):829–851. doi:10.1007/s00604-013-1157-6

    Article  CAS  Google Scholar 

  20. Ghambarian M, Yamini Y, Esrafili A (2013) Liquid-phase microextraction based on solidified floating drops of organic solvents. Microchim Acta 180(7–8):519–535. doi:10.1007/s00604-013-0969-8

    Article  CAS  Google Scholar 

  21. Zhao L, Lee HK (2002) Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry. Anal Chem 74(11):2486–2492. doi:10.1021/ac011124c

    Article  CAS  Google Scholar 

  22. Ruiz F-J, Rubio S, Pérez-Bendito D (2006) Tetrabutylammonium-induced coacervation in vesicular solutions of alkyl carboxylic acids for the extraction of organic compounds. Anal Chem 78(20):7229–7239. doi:10.1021/ac060427+

    Article  CAS  Google Scholar 

  23. Moradi M, Yamini Y (2012) Application of vesicular coacervate phase for microextraction based on solidification of floating drop. J Chromatogr A 1229:30–37. doi:10.1016/j.chroma.2012.01.028

    Article  CAS  Google Scholar 

  24. Moradi M, Yamini Y, Rezaei F, Tahmasebi E, Esrafili A (2012) Development of a new and environment friendly hollow fiber-supported liquid phase microextraction using vesicular aggregate-based supramolecular solvent. Analyst 137(15):3549–3557. doi:10.1039/C2AN35304K

    Article  CAS  Google Scholar 

  25. Li Y, Jiao Y, Guo Y, Yang Y (2013) Determination of bisphenol-A, 2,4-dichlorophenol, bisphenol-AF and tetrabromobisphenol-A in liquid foods and their packaging materials by vortex-assisted supramolecular solvent microextraction/high-performance liquid chromatography. Anal Methods 5(19):5037–5043. doi:10.1039/C3AY40586A

    Article  CAS  Google Scholar 

  26. Djozan D, Mahkam M, Ebrahimi B (2009) Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer: application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion. J Chromatogr A 1216(12):2211–2219. doi:10.1016/j.chroma.2008.12.101

    Article  CAS  Google Scholar 

  27. See HH, Marsin Sanagi M, Ibrahim WAW, Naim AA (2010) Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. J Chromatogr A 1217(11):1767–1772. doi:10.1016/j.chroma.2010.01.053

    Article  CAS  Google Scholar 

  28. Huang S-D, Huang H-I, Sung Y-H (2004) Analysis of triazine in water samples by solid-phase microextraction coupled with high-performance liquid chromatography. Talanta 64(4):887–893. doi:10.1016/j.talanta.2004.03.063

    Article  CAS  Google Scholar 

  29. Wang Y, You J, Ren R, Xiao Y, Gao S, Zhang H, Yu A (2010) Determination of triazines in honey by dispersive liquid–liquid microextraction high-performance liquid chromatography. J Chromatogr A 1217(26):4241–4246. doi:10.1016/j.chroma.2010.03.031

    Article  CAS  Google Scholar 

  30. Bagheri H, Khalilian F (2005) Immersed solvent microextraction and gas chromatography–mass spectrometric detection of s-triazine herbicides in aquatic media. Anal Chim Acta 537(1–2):81–87. doi:10.1016/j.aca.2005.01.036

    Article  CAS  Google Scholar 

  31. Djozan D, Ebrahimi B, Mahkam M, Farajzadeh MA (2010) Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber. Anal Chim Acta 674(1):40–48. doi:10.1016/j.aca.2010.06.006

    Article  CAS  Google Scholar 

  32. Portugal FCM, Pinto ML, Nogueira JMF (2008) Optimization of polyurethane foams for enhanced stir bar sorptive extraction of triazinic herbicides in water matrices. Talanta 77(2):765–773. doi:10.1016/j.talanta.2008.07.026

    Article  CAS  Google Scholar 

  33. Liu T, Cao P, Geng J, Li J, Wang M, Wang M, Li X, Yin D (2014) Determination of triazine herbicides in milk by cloud point extraction and high-performance liquid chromatography. Food Chem 142:358–364. doi:10.1016/j.foodchem.2013.07.062

    Article  CAS  Google Scholar 

  34. Rezaei F, Yamini Y, Moradi M (2014) A comparison between emulsification of reverse micelle-based supramolecular solvent and solidification of vesicle-based supramolecular solvent for the microextraction of triazines. J Chromatogr A1327:155–159. doi:10.1016/j.chroma.2013.12.063

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Yamini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, M., Yamini, Y., Tahmasebi, E. et al. Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchim Acta 183, 203–210 (2016). https://doi.org/10.1007/s00604-015-1607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1607-4

Keywords

Navigation