Skip to main content
Log in

Cyclodextrin-modified nanodiamond for the sensitive fluorometric determination of doxorubicin in urine based on its differential affinity towards β/γ-cyclodextrins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The manuscript reports on the preparation of β-cyclodextrin-modified nanodiamonds (βCD-ND) for the extraction and preconcentration of the fluorescent anticancer drug doxorubicin (DOX) from biological samples. The inclusion of DOX into the cavities of β- and γ-cyclodextrin (CD) confirms their utility for selective extraction and elution of the drug based on its good fit to the cyclodextrin cavity. Although both larger cyclodextrins (βCD and γCD) accommodate DOX, DOX clearly prefers the bigger γCD cavities. Dispersive micro solid-phase extraction using βCD-ND as sorbent enables the inclusion complexation of DOX. The elution of DOX from βCD-ND cavities occurs with a basic solution of γCD containing 10% acetonitrile owing to the preferential affinity (i.e. optimal fit) of DOX into the larger γCD cavity. DOX is quantified by monitoring its intrinsic fluorescence (exc/em = 475/595 nm). The method can determine DOX in urine with a limit of detection of 18 ng·mL−1. Recoveries (93.2% and 94.0%) and precision (RSDs of 5.9% and 4.7%) at 100 and 400 ng·mL−1 DOX levels in urine are satisfactory. The matrix effect is negligible even when working with undiluted urine samples.

Nanodiamonds functionalized with β-cyclodextrin (βCD-ND) were used as sorbent for the determination of nanomolar levels of doxorubicin (DOX). It is based on host:guest interactions ruled by different stabilities of DOX within cyclodextrin (CD) cavity-size: βCD/γCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ND:

Nanodiamonds

CD:

Cyclodextrin

βCD:

Beta-cyclodextrin

γCD:

Gamma-cyclodextrin

βCD-ND:

β-cyclodextrin-functionalized nanodiamonds

DOX:

Doxorubicin

NHS:

N-hydroxysuccinimide

EDC·HCl:

1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride

PL:

Photoluminescence

FT-IR:

Fourier Transform infrared spectroscopy

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

TGA:

Thermogravimetric analysis

MeCN:

Acetonitrile

RSD:

Relative standard deviation

HPLC:

High-performance liquid chromatography

HPLC-MS/MS:

Liquid chromatography tandem-mass spectrometry

SPE:

Solid phase extraction

References

  1. Xu XY, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  2. Krueger A, Lang D (2012) Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater 22:890–906

    Article  CAS  Google Scholar 

  3. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nature Nanotech 7:11–23

    Article  CAS  Google Scholar 

  4. Krueger A (2017) Current issues and challenges in surface chemistry of nanodiamonds. In: Arnault J-C (ed) Nanodiamonds: advanced material analysis properties and applications. Elsevier, Chapter 8 pp 183–242

  5. Yeap WS, Chen S, Loh KP (2009) Detonation nanodiamond: an organic platform for the Suzuki coupling of organic molecules. Langmuir 25:185–191

    Article  CAS  Google Scholar 

  6. Wahab Z, Foley EA, Pellechia PJ, Anneaux BL, Ploehn HJ (2015) Surface functionalization of nanodiamond with phenylphosphonate. J Colloid Interface Sci 450:301–309

    Article  CAS  Google Scholar 

  7. Kaur R, Badea I (2013) Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine 8:203–220

    Article  Google Scholar 

  8. Lim DG, Prim RE, Kim KH, Kang E, Park K, Jeong SH (2016) Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int J Pharm 514:41–51

    Article  CAS  Google Scholar 

  9. Nesterenko PN, Haddad PR (2010) Diamond-related materials as potential new media in separation science. Anal Bioanal Chem 396:205–211

    Article  CAS  Google Scholar 

  10. Caballero-Díaz E, Simonet B, Valcárcel M (2013) Nanodiamonds assisted-cloud point extraction for the determination of fluoranthene in river water. Anal Methods 5:3864–3871

    Article  Google Scholar 

  11. Zhang B, Zheng X, Li H, Lin J (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta 784:1–17

    Article  CAS  Google Scholar 

  12. Saini G, Jensen DS, Wiest LA, Vail MA, Dadson A, Lee ML, Shutthanandan V, Linford MR (2010) Core-shell diamond as a support for solid-phase extraction and high-performance liquid chromatography. Anal Chem 82(11):4448–4456

    Article  CAS  Google Scholar 

  13. Nesterenko PV, Fedyanina ON, Volgin YV, Jones P (2007) Ion chromatographic investigation of the ion-exchange properties of microdisperse sintered nanodiamonds. J Chromatogr A 1155:2–7

    Article  CAS  Google Scholar 

  14. Cai T, Zhang H, Li Z, Rahman AFMM, Qui H (2016) A new nano-on-micro stationary phase based on nanodiamond bonded on silica for hydrophilic interaction chromatography. RSC Adv 6:32757–32760

    Article  CAS  Google Scholar 

  15. Beeram SR, Rodriguez E, Doddavenkatanna S, Li Z, Pekarek A, Peev D, Goerl K, Trovato G, Hofmann T, Hage DS (2017) Nanomaterials as stationary phases and supports in liquid chromatography. Electrophoresis 38:2498–2512

    Article  CAS  Google Scholar 

  16. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52(6):1213–1225

    Article  CAS  Google Scholar 

  17. Lu H, Yuan G, He Q, Chen H (2009) Rapid analysis of anthracycline antibiotics doxorubicin and daunorubicin by microchip capillary electrophoresis. Microchem J 92:170–173

    Article  CAS  Google Scholar 

  18. Dharmalinga SR, Ramamurthy S, Chidambaram K, Nadaraju S (2014) A simple HPLC bioanalytical method for the determination of doxorubicin hydrochloride in rat plasma: application to pharmacokinetic studies. Trop J Pharm Res 13(3):409–415

    Article  Google Scholar 

  19. Sottani C, Rinaldi P, Leoni E, Poggi G, Teragni C, Delmonte A, Minoia C (2008) Simultaneous determination of cyclophosphamide, ifosfamide, doxorubicin, epirubicin and daunorubicin in human urine using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry: bioanalytical method validation. Rapid Commun Mass Spectrom 22:2645–2659

    Article  CAS  Google Scholar 

  20. Vajdle O, Zbiljić J, Tasić B, Jović D, Guzsvány V, Djordjevic A (2014) Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine. Electrochim Acta 132:49–57

    Article  CAS  Google Scholar 

  21. Ahmadi M, Madrakian T, Afkhami A (2015) Solid phase extraction of doxorubicin using molecularly imprinted polymer coated magnetite nanospheres prior to its spectrofluorometric determination. New J Chem 39(1):163–171

    Article  CAS  Google Scholar 

  22. Nawara K, Krysinski P, Blanchard GJ (2012) Photoinduced reactivity of doxorubicin: catalysis and degradation. J Phys Chem A 116(17):4330–4337

    Article  CAS  Google Scholar 

  23. Husain N, Ndou TT, Munoz de la Pena A, Warner IM (1992) Complexation of doxorubicin with β- and γ-cyclodextrins. Appl Spectrosc 46(4):652–658

    Article  CAS  Google Scholar 

  24. Micoli A, Soriano ML, Traboulsi H, Quintana M, Prato M (2013) ZnII-Cyclen as a supramolecular probe for tagging thymidine nucleosides on carbon nanotubes. Eur J Org Chem 18:3685–3690

    Article  Google Scholar 

  25. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Eng 49(38):6726–6744

    Article  CAS  Google Scholar 

  26. Jarre G, Liang YJ, Betz P, Lang D, Krueger A (2011) Playing the surface game-Diels-Alder reactions on diamond nanoparticles. Chem Commun 47:544–546

    Article  CAS  Google Scholar 

  27. Liang YJ et al (2011) Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci 354:23–30

    Article  CAS  Google Scholar 

  28. Hashemzadeh N, Hasanzadeh M, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A (2016) Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. JPA 6:235–241

    Google Scholar 

  29. Taei M, Hasanpour F, Salavati H, Mohammadian S (2016) Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator. Microchim Acta 183(1):49–56

    Article  CAS  Google Scholar 

  30. Martínez Ferreras F, Wolfbeis OS, Gorris HH (2012) Dual lifetime referenced fluorometry for the determination of doxorubicin in urine. Anal Chim Acta 729:62–66

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Spanish Ministry of Innovation and Science for the funding Project CTQ2014-52939R. CCC acknowledges MINECO for a Juan de la Cierva − Incorporación contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laura Soriano.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laura Soriano, M., Carrillo-Carrion, C., Ruiz-Palomero, C. et al. Cyclodextrin-modified nanodiamond for the sensitive fluorometric determination of doxorubicin in urine based on its differential affinity towards β/γ-cyclodextrins. Microchim Acta 185, 115 (2018). https://doi.org/10.1007/s00604-017-2660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2660-y

Keywords

Navigation