Skip to main content
Log in

Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Spinel-structured cobalt ferrite (CoFe2O4) magnetic nanoparticles (MNPs) were synthesized by a modified chemical coprecipitation method. The MNPs were characterized by X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. Then, a doxorubicin sensor was constructed by modifying a carbon paste electrode with multi-walled carbon nanotubes (MWCNTs) and the MNPs. Under optimized conditions, the differential pulse voltammetric response of the modified electrode at a working voltage of 0.46 V vs. Ag/AgCl is related to the concentration of doxorubicin in the 0.05–1150 nM range, with a 10 pM detection limit at a signal-to-noise ratio of 3.

Fabrication process of MWCNT/CoFe2O4 modified carbon paste electrode for electrocatalytic determination of doxorubicin. a) CPE and b) MWCNT/CoFe2O4/CPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Licata S, Sponiero A, Mordent A, Minotti G (2000) Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 13:414–420

    Article  CAS  Google Scholar 

  2. Speth P-A, Van Hoesel Q-G, Haanen C (1988) Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 15:15–31

    Article  CAS  Google Scholar 

  3. Rezaei B, Askarpour N, Ensafi A-A (2014) A novel sensitive doxorubicin impedimetric immunosensor based on a specific monoclonal antibody–gold nanoaprticle–sol–gel modified electrode. Talanta 119:164–169

    Article  CAS  Google Scholar 

  4. Guo Y, Chen Y, Zhao Q, Shuang S, Dong C (2014) Electrochemical sensor for ultrasensitive determination of doxorubicin and Methotrexate based on cyclodextrin-graphene hybrid nanosheets. Electroanalysis 23:2400–2407

    Article  Google Scholar 

  5. Mora L, Chumbimuni-Torres K-Y, Clawson C, Hernandez L, Zhang L, Wang J (2009) Real-time electrochemical monitoring of drug release from therapeutic nanoparticles. J Control Release 140:69–73

    Article  CAS  Google Scholar 

  6. Perez- Ruiz T, Martinez-lozano C, Sazn A, Bravo E (2001) Simultaneous determination of doxorubicin, daunorubicin, and idarubicin by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 22:134–138

    Article  CAS  Google Scholar 

  7. Lu H, Yuan G, He Q, Chen H (2009) Rapid analysis of anthracycline antibiotics doxorubicin and daunorubicin by microchip capillary electrophoresis. Microchem J 92:170–173

    Article  CAS  Google Scholar 

  8. Alhareth K, Vautheir C, Gueutin C, Ponchel G, Moussa F (2012) HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles. J Chromatogr B 887–888:128–132

    Article  Google Scholar 

  9. Zhou Q-Y, Chowbay B (2002) Determination of doxorubicin and its metabolites in rat serum and bile by LC: application to preclinical pharmacokinetic studies. J Pharm Biomed 30:1063–1074

    Article  CAS  Google Scholar 

  10. Ferreras F-M, Wolfbeis O-S, Gorris H-H (2012) Dual lifetime referenced fluorometry for the determination of doxorubicin in urine. Anal Chim Acta 729:62–66

    Article  Google Scholar 

  11. Tmejova K, Hynek D, Kopel P, Dostalova S, Smerkova K, Stanisavljevic M, Viet Nguyen H, Nejdl L, Vaculovicova M, Krizkova S, Kizek R, Adam V (2013) Electrochemical behaviour of doxorubicin encapsulated in apoferritin. Int J Electrochem Sci 8:12658–12671

    CAS  Google Scholar 

  12. Zhang K, Zhang Y (2010) Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes and its application. Microchim Acta 169:161–165

    Article  CAS  Google Scholar 

  13. Fei J, Wen X, Zhang Y, Yi L (2009) Voltammetric determination of trace doxorubicin at a nano-titania/nafion composite film modified electrode in the presence of cetyltrimethylammonium bromide. Microchim Acta 164:85–91

    Article  CAS  Google Scholar 

  14. Hu J, Li Q (1999) Voltammetric behavior of adriamycin and its determination at Ni ion-implanted electrode. Analyt Sci 15:1215–1218

    Article  CAS  Google Scholar 

  15. Vacek J, Havran L, Fojta M (2009) Ex situ voltammetry and chronopotentiometry of doxorubicin at a pyrolytic graphite electrode: redox and catalytic properties and analytical applications. Electroanalysis 21:2139–2144

    Article  CAS  Google Scholar 

  16. Rezaei B, Saghebdoust M, Mohammad Sorkhe A, Majidi N (2011) Generation of a doxorubicin immunosensor based on a specific monoclonal antibody-nanogold-modified electrode. Electrochim Acta 56:5702–5706

    Article  CAS  Google Scholar 

  17. Li Y, Du X, Wu C, Liu X, Wang X, Xu P (2013) An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. Nanoscale Res Lett 8:522–526

    Article  CAS  Google Scholar 

  18. Zi Z, Sun Y, Zhu X, Yang Z, Dai J, Song W (2009) Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 321:1251–1255

    Article  CAS  Google Scholar 

  19. Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode. Sensors Actuators B 203:909–918

    Article  CAS  Google Scholar 

  20. Vajdle O, Zbiljic J, Tasic B, Jovic D, Guzsuang V, Djordjevic A (2014) Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine. Elctrochem Acta 132:49–57

    Article  CAS  Google Scholar 

  21. Oliveira-Brett A-M, Piedade J-A-P, Chiorcea A-M (2002) Anodic voltammetry and AFM imaging of picomoles of adriamycin adsorbed onto carbon surfaces. J Electroanal Chem 538-/539:267–276

    Article  Google Scholar 

  22. Jemelková Z, Zima J, Barek J (2009) Voltammetric and amperometric determination of doxorubicin using carbon paste electrodes. Collect Czech Chem Commun 74:1503–1515

    Article  Google Scholar 

  23. Kumbhar V-S, Jagadale A-D, Shinde N-M, Lokhande C-D (2012) Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl Surf Sci 259:39–43

    Article  CAS  Google Scholar 

  24. Galus Z (1976) Fundamentals of electrochemical analysis. Ellis Horwood, New York

    Google Scholar 

  25. Tavallali H, Jahanbekam A (2010) Flow injection spectrophotometric determination of doxorubicin hydrochloride in urine samples. Int J Pharm Tech Res 2:1943–1947

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Taei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taei, M., Hasanpour, F., Salavati, H. et al. Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator. Microchim Acta 183, 49–56 (2016). https://doi.org/10.1007/s00604-015-1588-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1588-3

Keywords

Navigation