Skip to main content
Log in

Aptamer-modified carbon nanomaterial based sorption coupled to paper spray ion mobility spectrometry for highly sensitive and selective determination of methamphetamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A cellulose paper was modified with an aptamer against methamphetamine on either carbon dots (CDs) or on multichannel carbon nanotubes (CNTs). The resulting sorbent was applied to the extraction of METH from blood or saliva. The METH-loaded paper than also was directly applied as a paper spray ionization source in ion mobility spectrometry. The carbon nanomaterial enhances sensitivity, and the aptamer enhances selectivity. The materials were covalently bound to the paper on one side, while the aptamer was immobilized on the other. After optimization of the extraction process and instrumental parameters, the limits of detection when using the aptamer-CNT modified paper are 0.6 ng·mL−1 for saliva, and 0.45 ng·mL−1 for plasma. The respective values when using aptamer-CD modified paper are 1.5 ng·mL−1 for saliva and 0.9 ng·mL−1 for plasma. Calibration plots are linear in the 2 to 150 ng·mL−1 METH concentration range for saliva, and in the 1.5 to 200 ng·mL−1 concentration ranges for blood when using the aptamer-CNT based method. When using the aptamer-CDs, the dynamic ranges extend from 5 to 200 ng·mL−1 and from 3 to 250 ng·mL−1, respectively. The method was applied to the determination of METH in real samples of saliva and blood, and the accuracy of the method was confirmed by comparison of the results with data analyzed by GC-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  CAS  Google Scholar 

  2. Stephans SE, Whittingham TS, Douglas AJ, Lust WD, Yamamoto BK (1998) Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J Neurochem 71:613–621

    Article  CAS  Google Scholar 

  3. Weinmann W, Bohnert M (1998) Lethal monointoxication by overdosage of MDEA. Forensic Sci Int 91:91–101

    Article  CAS  Google Scholar 

  4. Huang Z, Zhang S (2003) Confirmation of amphetamine, methamphetamine, MDA and MDMA in urine samples using disk solid-phase extraction and gas chromatography–mass spectrometry after immunoassay screening. J Chromatogr B 792:241–247

    Article  CAS  Google Scholar 

  5. Koide I, Noguchi O, Okada K, Yokoyama A, Oda H, Yamamoto S, Kataoka H (1998) Determination of amphetamine and methamphetamine in human hair by headspace solid-phase microextraction and gas chromatography with nitrogen–phosphorus detection. J Chromatogr B Biomed Sci Appl 707:99–104

    Article  CAS  Google Scholar 

  6. Okajima K, Namera A, Yashiki M, Tsukue I, Kojima T (2001) Highly sensitive analysis of methamphetamine and amphetamine in human whole blood using headspace solid-phase microextraction and gas chromatography–mass spectrometry. Forensic Sci Int 116:15–22

    Article  CAS  Google Scholar 

  7. Du P, Li K, Li J, Xu Z, Fu X, Yang J, Zhang H, Li X (2015) Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res 84:76–84

    Article  CAS  Google Scholar 

  8. Subedi B, Kannan K (2014) Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York state and estimation of illicit drug usage in communities through wastewater analysis. Environ Sci Technol 48:6661–6670

    Article  CAS  Google Scholar 

  9. Boatto G, Faedda MV, Pau A, Asproni B, Menconi S, Cerri R (2002) Determination of amphetamines in human whole blood by capillary electrophoresis with photodiode array detection. J Pharm Biomed Anal 29:1073–1080

    Article  CAS  Google Scholar 

  10. Iwata YT, Inoue H, Kuwayama K, Kanamori T, Tsujikawa K, Miyaguchi H, Kishi T (2006) Forensic application of chiral separation of amphetamine-type stimulants to impurity analysis of seized methamphetamine by capillary electrophoresis. Forensic Sci Int 161:92–96

    Article  CAS  Google Scholar 

  11. Ochoa ML, Harrington PB (2004) Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry. Anal Chem 76:985–991

    Article  CAS  Google Scholar 

  12. Miki A, Keller T, Regenscheit P, Dirnhofer R, Tatsuno M, Katagi M, Nishikawa M, Tsuchihashi H (1997) Application of ion mobility spectrometry to the rapid screening of methamphetamine incorporated in hair. J Chromatogr B Biomed Sci Appl 692:319–328

    Article  Google Scholar 

  13. Alizadeh N, Mohammadi A, Tabrizchi M (2008) Rapid screening of methamphetamines in human serum by headspace solid-phase microextraction using a dodecylsulfate-doped polypyrrole film coupled to ion mobility spectrometry. J Chromatogr A 1183:21–28

    Article  CAS  Google Scholar 

  14. Wang H, Liu J, Cooks RG, Ouyang Z (2010) Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed 122:889–892

    Article  Google Scholar 

  15. Wang H, Manicke NE, Yang Q, Zheng L, Shi R, Cooks RG, Ouyang Z (2011) Direct analysis of biological tissue by paper spray mass spectrometry. Anal Chem 83:1197–1201

    Article  CAS  Google Scholar 

  16. Zhang Z, Cooks RG, Ouyang Z (2012) Paper spray: a simple and efficient means of analysis of different contaminants in foodstuffs. Analyst 137:2556–2558

    Article  CAS  Google Scholar 

  17. Liu J, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z (2010) Development, characterization, and application of paper spray ionization. Anal Chem 82:2463–2471

    Article  CAS  Google Scholar 

  18. Manicke NE, Belford M (2015) Separation of opiate isomers using electrospray ionization and paper spray coupled to high-field asymmetric waveform ion mobility spectrometry. J Am Soc Mass Spectrom 26:701–705

    Article  CAS  Google Scholar 

  19. Li M, Zhang J, Jiang J, Zhang J, Gao J, Qiao X (2014) Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry. Analyst 139:1687–1691

    Article  CAS  Google Scholar 

  20. Lai PH, Chen PC, Liao YW, Liu JT, Chen CC, Lin CH (2015) Comparison of gampi paper and nanofibers to chromatography paper used in paper spray-mass spectrometry. Int J mass. Spectrum 375:14–17

    CAS  Google Scholar 

  21. Wang Q, Zheng Y, Zhang X, Han X, Wang T, Zhang Z (2015) A silica coated paper substrate: development and its application in paper spray mass spectrometry for rapid analysis of pesticides in milk. Analyst 140:8048–8056

    Article  CAS  Google Scholar 

  22. Sherma J, Fried B (1984) Thin-layer and paper chromatography. Anal Chem 56:48–63

    Article  Google Scholar 

  23. Zargar T, Khayamian T, Jafari MT (2017) Immobilized aptamer paper spray ionization source for ion mobility spectrometry. J Pharm Biomed Anal 132:232–237

    Article  CAS  Google Scholar 

  24. Shi Q, Shi Y, Pan Y, Yue Z, Zhang H, Yi C (2015) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182:505–511

    Article  CAS  Google Scholar 

  25. Khayamian T, Jafari MT (2007) Design for electrospray ionization-ion mobility spectrometry. Anal Chem 79:3199–3205

    Article  CAS  Google Scholar 

  26. Li H, He X, Liu Y, Huang H, Lian S, Lee ST, Kang Z (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609

    Article  CAS  Google Scholar 

  27. Reese ES, de B Harrington P (1999) The analysis of methamphetamine hydrochloride by thermal desorption ion mobility spectrometry and SIMPLISMA. J Forensic Sci 44:6876

  28. Gentili S, Mortali C, Mastrobattista L, Berretta P, Zaami S (2016) Determination of different recreational drugs in sweat by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME GC-MS): application to drugged drivers. J Pharm Biomed Anal 129:282–287

    Article  CAS  Google Scholar 

  29. Sergi M, Compagnone D, Curini R, D’Ascenzo G, Del Carlo M, Napoletano S, Risoluti R (2010) Micro-solid phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry for the determination of stimulants, hallucinogens, ketamine and phencyclidine in oral fluids. Anal Chim Acta 675:132–137

    Article  CAS  Google Scholar 

  30. Hasegawa C, Kumazawa T, Lee XP, Marumo A, Shinmen N, Seno H, Sato K (2007) Pipette tip solid-phase extraction and gas chromatography-mass spectrometry for the determination of methamphetamine and amphetamine in human whole blood. Anal Bioanal Chem 389:563–570

    Article  CAS  Google Scholar 

  31. Souza DZ, Boehl PO, Comiran E, Mariotti KC, Pechansky F, Duarte PC, De Boni R, Froehlich PE, Limberger RP (2011) Determination of amphetamine-type stimulants in oral fluid by solid-phase microextraction and gas chromatography–mass spectrometry. Anal Chim Acta 696:67–76

    Article  CAS  Google Scholar 

  32. Rezazadeh M, Yamini Y, Seidi S (2015) Application of a new nanocarbonaceous sorbent in electromembrane surrounded solid phase microextraction for analysis of amphetamine and methamphetamine in human urine and whole blood. J Chromatogr A 1396:1–6

    Article  CAS  Google Scholar 

  33. Kumazawa T, Hasegawa C, Hara K, Uchigasaki S, Lee XP, Seno H, Suzuki O, Sato K (2012) Molecularly imprinted solid-phase extraction for the selective determination of methamphetamine, amphetamine, and methylenedioxyphenylalkylamine designer drugs in human whole blood by gas chromatography-mass spectrometry. J Sep Sci 35:726–733

    Article  CAS  Google Scholar 

  34. Taghvimi A, Hamishehkar H (2017) Carbon coated magnetic nanoparticles as a novel magnetic solid phase extraction adsorbent for simultaneous extraction of methamphetamine and ephedrine from urine samples. J Chromatogr B 1041:113–119

    Article  Google Scholar 

  35. Domingos E, de Carvalho TC, Pereira I, Vasconcelos GA, Thompson CJ, Augusti R, Rodrigues RRT, Tose LV, Santos H, Araujo JR, Vaz BG, Romão W (2017) Paper spray ionization mass spectrometry applied to forensic chemistry – drugs of abuse, inks and questioned documents. Anal Methods 9:4400–4409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taghi Khayamian.

Ethics declarations

The authors declare no competing financial interest.

Electronic supplementary material

ESM 1

(DOCX 80.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, T., Khayamian, T. & Jafari, M.T. Aptamer-modified carbon nanomaterial based sorption coupled to paper spray ion mobility spectrometry for highly sensitive and selective determination of methamphetamine. Microchim Acta 185, 103 (2018). https://doi.org/10.1007/s00604-017-2623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2623-3

Keywords

Navigation