Skip to main content
Log in

Aptamer-functionalized magnetic and fluorescent nanospheres for one-step sensitive detection of thrombin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A one-step sandwich method is described for detecting proteins with magnetic nanospheres (MNs) and fluorescent nanospheres (FNs). Thrombin is selected as a model analyte to validate the method. Two DNA aptamers (Apt 29 and Apt 15 targeting two different exosites of thrombin) are chosen as recognition elements to modify MNs and FNs. The superparamagnetic MN-Apt 29 conjugate is used to separate and concentrate thrombin. The FN-Apt 15 conjugate encapsulates hundreds of fluorescent quantum dots and is used as reporter to provide a stable signal. Magnetic capture and fluorescence identification are performed simultaneously to form a sandwich complex (MN-Apt 29-thrombin-FN-Apt 15) for fluorescence determination (at excitation/emission wavelengths of 380/622 nm). The method is convenient, time saving, and gives a strong signal (compared to the two-step method where capture and identification are performed in two steps). The one-step method presented here is completed within 30 min and has a 3.5 ng·mL−1 (97 pM) detection limit. The method is reproducible, has an intra-assay variability of 1.5%, and an inter-assay variability of 4.9%. Other serum proteins (HSA, CEA, PSA, and AFP) do not interfere. The method was also applied to analyze serum samples. Almost the same fluorescence intensity was measured when analyzing 1% serum samples (compared to buffer samples).

Magnetic nanospheres with excellent superparamagnetic property and fluorescent QD-based nanospheres were prepared and used in a one-step sensitive method for detecting thrombin. The method exhibits good reproducibility, high specificity, and good selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu L, Qu X (2015) Cancer biomarker detection: Recent achievements and challenges. Chem Soc Rev 44(10):2963–2997. https://doi.org/10.1039/c4cs00370e

    Article  CAS  Google Scholar 

  2. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407(6801):258–264. https://doi.org/10.1038/35025229

    Article  CAS  Google Scholar 

  3. Ebrahimi S, Rahmani F, Behnam-Rassouli R, Hoseinkhani F, Parizadeh MR, Keramati MR, Khazaie M, Avan A, Hassanian SM (2017) Proinflammatory signaling functions of thrombin in cancer. J Cell Physiol 232(9):2323–2329. https://doi.org/10.1002/jcp.25753

    Article  CAS  Google Scholar 

  4. Cai W, Tucholski T, Chen B, Alpert AJ, McIlwain S, Kohmoto T, Jin S, Ge Y (2017) Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal Chem 89(10):5467–5475. https://doi.org/10.1021/acs.analchem.7b00380

    Article  CAS  Google Scholar 

  5. Zhao Y, Liu G, Yuan X, Gan J, Peterson JE, Shen JX (2017) Strategy for the quantitation of a protein conjugate via hybrid immunocapture-liquid chromatography with sequential HRMS and SRM-Based LC-MS/MS analyses. Anal Chem 89(9):5144–5151. https://doi.org/10.1021/acs.analchem.7b00926

    Article  CAS  Google Scholar 

  6. Liew OW, Yandle TG, Chong JP, Ng YX, Frampton CM, Ng TP, Lam CS, Richards AM (2016) High-sensitivity sandwich ELISA for plasma NT-proUcn2: Plasma concentrations and relationship to mortality in heart failure. Clin Chem 62(6):856–865. https://doi.org/10.1373/clinchem.2015.252932

    Article  CAS  Google Scholar 

  7. Zhang Y, Guo YM, Xianyu YL, Chen WW, Zhao YY, Jiang XY (2013) Nanomaterials for ultrasensitive protein detection. Adv Mater 25(28):3802–3819. https://doi.org/10.1002/adma.201301334

    Article  CAS  Google Scholar 

  8. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574. https://doi.org/10.1021/acs.chemrev.5b00321

    Article  CAS  Google Scholar 

  9. Zrazhevskiy P, Sena M, Gao XH (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354. https://doi.org/10.1039/b915139g

    Article  CAS  Google Scholar 

  10. Fayyadh TK, Ma FY, Qin C, Zhang XW, Li W, Zhang XE, Zhang ZP, Cui ZQ (2017) Simultaneous detection of multiple viruses in their co-infected cells using multicolour imaging with self-assembled quantum dot probes. Microchim Acta 184(8):2815–2824. https://doi.org/10.1007/s00604-017-2300-6

    Article  CAS  Google Scholar 

  11. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244. https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  12. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512. https://doi.org/10.1021/acs.chemrev.5b00687

    Article  CAS  Google Scholar 

  13. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334. https://doi.org/10.1039/c2cs15337h

    Article  CAS  Google Scholar 

  14. Xiao DL, Lu T, Zeng R, Bi YP (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: A review on recent advances. Microchim Acta 183(10):2655–2675. https://doi.org/10.1007/s00604-016-1928-y

    Article  CAS  Google Scholar 

  15. Wen CY, Xie HY, Zhang ZL, Wu LL, Hu J, Tang M, Wu M, Pang DW (2016) Fluorescent/Magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: Preparation, properties, and their applications in cancer studies. Nano 8:12406–12429. https://doi.org/10.1039/C5NR08534A

    CAS  Google Scholar 

  16. Hu J, Zhang ZL, Wen CY, Tang M, Wu LL, Liu C, Zhu L, Pang DW (2016) Sensitive and quantitative detection of C-reaction protein based on immunofluorescent nanospheres coupled with lateral flow test strip. Anal Chem 88(12):6577–6584. https://doi.org/10.1021/acs.analchem.6b01427

    Article  CAS  Google Scholar 

  17. Wen CY, Jiang YZ, Li XY, Tang M, Wu LL, Hu J, Pang DW, Zeng JB (2017) Efficient enrichment and analyses of bacteria at ultralow concentration with quick-response magnetic nanospheres. ACS Appl Mater Interfaces 9(11):9416–9425. https://doi.org/10.1021/acsami.6b16831

    Article  CAS  Google Scholar 

  18. Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 45(9):2583–2602. https://doi.org/10.1039/c5cs00645g

    Article  CAS  Google Scholar 

  19. Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998. https://doi.org/10.1021/cr030183i

    Article  CAS  Google Scholar 

  20. Tasset DM, Kubik MF, Steiner W (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272(5):688–698. https://doi.org/10.1006/jmbi.1997.1275

    Article  CAS  Google Scholar 

  21. Wen CY, Tang M, Hu J, Wu LL, Pang DW, Zeng JB, Li XY (2016) Determination of the absolute number concentration of nanoparticles and the active affinity sites on their surfaces. Anal Chem 88(20):10134–10142. https://doi.org/10.1021/acs.analchem.6b02613

    Article  CAS  Google Scholar 

  22. Lao Y-H, Peck K, Chen L-C (2009) Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Anal Chem 81(5):1747–1754. https://doi.org/10.1021/ac801285a

    Article  CAS  Google Scholar 

  23. Davie EW, Kulman JD (2006) An Overview of the Structure and Function of Thrombin. Semin Thromb Hemost 32:3–15. https://doi.org/10.1055/s-2006-939550

    Article  CAS  Google Scholar 

  24. Cao Y, Wang Z, Cao J, Mao X, Chen G, Zhao J (2017) A general protein aptasensing strategy based on untemplated nucleic acid elongation and the use of fluorescent copper nanoparticles: Application to the detection of thrombin and the vascular endothelial growth factor. Microchim Acta 184(10):3697–3704. https://doi.org/10.1007/s00604-017-2393-y

    Article  CAS  Google Scholar 

  25. He J, Li G, Hu Y (2017) Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: Highly selective and sensitive determination of thrombin and oxytetracycline. Microchim Acta 184(7):2365–2373. https://doi.org/10.1007/s00604-017-2263-7

    Article  CAS  Google Scholar 

  26. Sui N, Wang L, Xie F, Liu F, Xiao H, Liu M, Yu WW (2016) Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Microchim Acta 183(5):1563–1570. https://doi.org/10.1007/s00604-016-1774-y

    Article  CAS  Google Scholar 

  27. Wang G-L, Hu X-L, Wu X-M, Dong Y-M, Li Z-J (2015) Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Microchim Acta 183(2):765–771. https://doi.org/10.1007/s00604-015-1703-5

    Article  Google Scholar 

  28. Ma M, Zheng X (2015) Preparation of brightly fluorescent silica nanoparticles modified with lucigenin and chitosan, and their application to an aptamer-based sandwich assay for thrombin. Microchim Acta 182(13–14):2193–2199. https://doi.org/10.1007/s00604-015-1554-0

    Article  CAS  Google Scholar 

  29. Lin Z, Pan D, Hu T, Liu Z, Su X (2015) A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots. Microchim Acta 182(11–12):1933–1939. https://doi.org/10.1007/s00604-015-1526-4

    Article  CAS  Google Scholar 

  30. Zhu Y, Hu XC, Shi S, Gao RR, Huang HL, Zhu YY, Lv XY, Yao TM (2016) Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens Bioelectron 79:205–212. https://doi.org/10.1016/j.bios.2015.12.015

    Article  CAS  Google Scholar 

  31. Kuang L, Cao SP, Zhang L, Li QH, Liu ZC, Liang RP, Qiu JD (2016) A novel nanosensor composed of aptamer bio-dots and gold nanoparticles for determination of thrombin with multiple signals. Biosens Bioelectron 85:798–806. https://doi.org/10.1016/j.bios.2016.05.096

    Article  CAS  Google Scholar 

  32. Yu J, Yang L, Liang X, Dong T, Liu H (2015) Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin. Analyst 140(12):4114–4120. https://doi.org/10.1039/c5an00519a

    Article  CAS  Google Scholar 

  33. Wang C, Zhai W, Wang Y, Yu P, Mao L (2015) MnO2 nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst 140(12):4021–4029. https://doi.org/10.1039/c5an00581g

    Article  CAS  Google Scholar 

  34. Xu Z, Huang X, Dong C, Ren J (2014) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181(7):723–730. https://doi.org/10.1007/s00604-013-1132-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21505157), the Applied Basic Research Projects of Qingdao (No. 17-1-1-79-jch, 15-9-1-94-JCH), the Fundamental Research Funds for the Central Universities (No. 17CX02055), the Natural Scientific Foundation of Shandong (No. ZR2016BQ23), and the Open Project Foundation in Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment (No. PJS140011611).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong-Ying Wen or Jing-Bin Zeng.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 5.06 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, CY., Bi, JH., Wu, LL. et al. Aptamer-functionalized magnetic and fluorescent nanospheres for one-step sensitive detection of thrombin. Microchim Acta 185, 77 (2018). https://doi.org/10.1007/s00604-017-2621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2621-5

Keywords

Navigation