Skip to main content
Log in

Adsorption and specific recognition of DNA by using imprinted polymer layers grafted onto ionic liquid functionalized magnetic microspheres

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly imprinted polymer based on silica modified Fe3O4 microsphere and ionic liquid was prepared for the adsorption and specific recognition of DNA. Water-compatible imidazolium ionic liquids were introduced on the surface of silica-coated Fe3O4 microsphere, then used as the adsorbents, againsting DNA from salmon testes (stDNA) by combining immobilized template and surface imprinting techniques. The imprinted polymer layers were grafted onto ionic liquid functionalized microspheres through sol-gel approach using N-3-(3-triethoxysilylpropyl)-3-aminopropyl imidazolium chloride and N-3-(3-triethoxysilylpropyl)-3-mexyl imidazolium chloride as the functional monomers, and tetraethoxysilane as the cross-linker. Because both imidazolium ionic liquid and DNA are soluble in water, it is mandatory to implement an imprinted process in an aqueous medium to well maintain the integrity of the conformation. Fourier transform infrared spectrometry, thermogravimetric analysis, transmission electron microscopy, X-ray diffraction and vibrating sample magnetometry were employed to characterize the materials. The nanomaterials with multiple imprinting sites and biocompatible cavities exhibit high specific adsorption capacity of DNA (162 mg·g−1) and excellent rebinding selectivity (imprinting factor up to 6.6) against non-imprinted molecules at pH value of 5.10. Moreover, it is feasible to strip DNA from the highly cross-linked polymer network by using aqueous NaCl (1.0 M). The nanomaterials are cap able of capturing DNA from calf whole blood, which might provide a viable tool for DNA preconcentration, separation and recognition.

Molecularly imprinted polymers (MIPs) were grafted onto ionic liquid (IL) functionalized magnetic microspheres (Fe3O4@SiO2@IL) by using imidazolium ILs as the monomers and tetraethoxysilane (TEOS) as the cross-linker. Fe3O4@SiO2@MIPs show high adsorption capacity and satisfactory selectivity for DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polyakov MV, Khim ZF (1931) Adsorption properties of silica gel and its structure. Zh Fiz Khim Ser B 2:799–805

    Google Scholar 

  2. Chen LX, SF X, Li JH (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev. 40:2922–2942

    Article  CAS  Google Scholar 

  3. Chen LX, Wang XY, WH L, XQ W, Li JH (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev. 45:2137–2211

    Article  CAS  Google Scholar 

  4. Li HF, Xie T, Ye LL, Wang YW, Xie CG (2017) Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from cvegetables. Microchim Acta 184:1011–1019

    Article  CAS  Google Scholar 

  5. Wackerlig J, Schirhagl R (2015) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88:250–261

    Article  Google Scholar 

  6. You M, Yang S, Jiao F, Yang LZ, Zhang F, He PG (2016) Label-free electrochemical multi-sites recognition of G-rich DNA using multi-walled carbon nanotubes–supported molecularly imprinted polymer with guanine sites of DNA. Electrochim Acta 199:133–141

    Article  CAS  Google Scholar 

  7. Verheyen E, Schillemans JP, van Wijk M, Demeniex MA, Hennink WE, van Nostrum CF (2011) Challenges for the effective molecular imprinting of proteins. Biomaterials 32:3008–3020

    Article  CAS  Google Scholar 

  8. Chen JX, Lei S, Xie YY, Wang MZ, Yang J, Ge XW (2015) Fabrication of high-performance magnetic lysozyme-imprinted microsphere and its NIR-responsive controlled release property. ACS Appl Mater Inter 7:28606–28615

    Article  CAS  Google Scholar 

  9. Li SW, Yang KG, Deng N, Min Y, Liu LK, Zhang LH, Zhang YK (2016) Thermoresponsive epitope surface-imprinted nanoparticles for specific capture and release of target protein from human plasma. ACS Appl Mater Inter 8:5747–5751

    Article  CAS  Google Scholar 

  10. Kubo T, Arimura S, Tominaga Y, Naito T, Hosoya K, Otsuka K (2015) Molecularly imprinted polymers for selective adsorption of lysozyme and cytochrome c using a PEG-based hydrogel: selective recognition for different conformations due to pH conditions. Macromolecules 48:4081–4087

    Article  CAS  Google Scholar 

  11. Gao DM, Zhang ZP, MH W, Xie CG, Guan GJ, Wang DP (2007) A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc 129:7859–7866

    Article  CAS  Google Scholar 

  12. Gao L, Chen LG, Li XW (2015) Magnetic molecularly imprinted polymers based on carbon nanotubes for extraction of carbamates. Microchim Acta 182:781–787

    Article  CAS  Google Scholar 

  13. Bhakta S, Seraji MSI, Suib SL, Rusling JF (2015) Antibody-like biorecognition sites for proteins from surface imprinting on nanoparticles. ACS Appl Mater Inter 7:28197–28206

    Article  CAS  Google Scholar 

  14. Gao RX, Hao Y, Zhang LL, Cui XH, Liu DC, Zhang M, Tang YH, Zheng YS (2016) A facile method for protein imprinting on directly carboxyl-functionalized magnetic nanoparticles using non-covalent template immobilization strategy. Chem Eng J 284:139–148

    Article  CAS  Google Scholar 

  15. Huang YH, Wang YZ, Wang Y, Pan Q, Ding XQ, KJ X, Li N, Wen Q (2016) Ionic liquid-coated Fe3O4/APTES/graphene oxide nanocomposites: synthesis, characterization and evaluation in protein extraction processes. RSC Adv 6:5718–5728

    Article  CAS  Google Scholar 

  16. Wen Q, Wang YZ, KJ X, Li N, Zhang HM, Yang Q (2016) A novel polymeric ionic liquid-coated magnetic multiwalled carbon nanotubes for the solid-phase extraction of Cu, Zn-superoxide dismutase. Anal Chim Acta 939:54–63

    Article  CAS  Google Scholar 

  17. Wang YY, Han M, Liu GS, Hou XD, Huang YN, KB W, Li CY (2015) Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosens Bioelectron 74:792–798

    Article  CAS  Google Scholar 

  18. Ding HY, Chen RF, Liu MM, Huang R, Du YM, Huang C, Yu XY, Feng XH, Liu F (2016) Preparation and characterization of biocompatible molecularly imprinted poly (ionic liquid) films on the surface of multi-walled carbon nanotubes. RSC Adv 6:43526–43538

    Article  CAS  Google Scholar 

  19. CB D, XL H, Guan P, Gao XM, Song RY, Li J, Qian LW, Zhang N, Guo LX (2016) Preparation of surface-imprinted microspheres effectively controlled by orientated template immobilization using highly cross-linked raspberry-like microspheres for the selective recognition of an immunostimulating peptide. J Mater Chem B 4:1510–1519

    Article  Google Scholar 

  20. Wu J, Kodzius R, Cao W, Wen W (2014) Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchimica Acta 181(13–14):1611–1631

    Article  CAS  Google Scholar 

  21. Tang RH, Yang H, Choi JR, Gong Y, Hu J, Wen T, Li XJ, Xu B, Mei QB, Xu F (2017) Paper-based device with on-chip reagent storage for rapid extraction of DNA from biological samples. Microchimica Acta 184:2141–2150. https://doi.org/10.1007/s00604-017-2225-0

    Article  CAS  Google Scholar 

  22. Clark KD, Nacham O, HL Y, Li TH, Yamsek MM, Ronning DR, Anderson JL (2015) Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal Chem 87:1552–1559

    Article  CAS  Google Scholar 

  23. Li N, Wang YZ, Xu KJ, Wen Q, Ding XQ, Zhang HM, Yang Q (2016) High-performance of deep eutectic solvent based aqueous bi-phasic systems for the extraction of DNA. RSC Adv 6:84406–84414

    Article  CAS  Google Scholar 

  24. Liu MM, Pi JY, Wang XJ, Huang R, YM D, XY Y, Tan WF, Liu F, Shea KJ (2016) A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly (ionic liquids) on the surface of multiwall carbon nanotubes. Anal Chim Acta 932:29–40

    Article  CAS  Google Scholar 

  25. Liu YJ, Wang YZ, Dai QZ, Zhou YG (2016) Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal Chim Acta 936:168–178

    Article  CAS  Google Scholar 

  26. KJ X, Wang YZ, Li YX, Lin YX, Zhang HB, Zhou YG (2016) A novel poly (deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin. Anal Chim Acta 946:64–72

    Article  Google Scholar 

  27. Zhou HC, Yang LR, Li W, Wang FC, Li WS, Zhao JM, Liang XF, Liu HZ (2012) Immobilizing penicillin g acylase using silica-supported ionic liquids: The effects of ionic liquid loadings. Ind Eng Chem Res 51:13173–13181

    Article  CAS  Google Scholar 

  28. Li DY, Wang YZ, Zhao XL, He XW, Li WY, Zhang YK (2014) Facile synthesis of ionic liquid functionalized silica-capped CdTe quantum dots for selective recognition and detection of hemoproteins. J Mater Chem B 2:5659–5665

    Article  CAS  Google Scholar 

  29. Chen XW, Mao QX, Liu JW, Wang JH (2012) Isolation/separation of plasmid DNA using hemoglobin modified magnetic nanocomposites as solid-phase adsorbent. Talanta 100:107–112

    Article  CAS  Google Scholar 

  30. Li X, Zhang JX, HC G (2011) Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. Langmuir 27:6099–6106

    Article  CAS  Google Scholar 

  31. Wang Y, Ma XD, Ding C, Li J (2015) pH-responsive deoxyribonucleic acid capture/release by polydopamine functionalized magnetic nanoparticles[J]. Analytica chimica acta 862: 33–40

  32. Ghaemi M, Absalan G (2014) Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles. Microchimica Acta 181:45–53

    Article  CAS  Google Scholar 

  33. LL H, Hu B, Shen LM, Zhang DD, Chen XW, Wang JH (2015) Polyethyleneimine-iron phosphate nanocomposite as a promising adsorbent for the isolation of DNA. Talanta 132:857–863

    Article  Google Scholar 

  34. Spink CH, Chaires JB (1997) Thermodynamics of the binding of a cationic lipid to DNA. J Am Chem Soc 119:10920–10928

    Article  CAS  Google Scholar 

  35. Vijayaraghavan R, Izgorodin A, Ganesh V, Surianarayanan M, MacFarlane DR (2010) Long-Term Structural and Chemical Stability of DNA in Hydrated Ionic Liquids. Angew Chem Int Edit 49:1631–1633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial supports by the National Natural Science Foundation of China (No.21375035; No.21675048) and the Foundation for Innovative Research Groups of NSFC (Grant 21,521,063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Q., Wang, Y., Xu, W. et al. Adsorption and specific recognition of DNA by using imprinted polymer layers grafted onto ionic liquid functionalized magnetic microspheres. Microchim Acta 184, 4433–4441 (2017). https://doi.org/10.1007/s00604-017-2495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2495-6

Keywords

Navigation