Skip to main content
Log in

Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a new kind of selection method (referred to as orientation selection) for improved screening for broad-spectrum lipopolysaccharides (LPSs) using unlabeled ssDNA aptamers. The method is based on the capture-SELEX technique using magnetic nanoparticles. LPS from Salmonella enterica serotype typhimurium was chosen as an exemplary target. Once the ssDNA library is preconcentrated to a certain degree, two Gram-negative bacteria were used as orientation molecules in the subsequent selection process. Using this strategy, one optimal aptamer ('EA7') was captured that has a high affinity (Kd = 102 ± 17 nM) for LPS and it was also confirmed that it can recognize three other bacterial LPSs. It is presumed that EA7 binds to the lipid A region of LPS. When using carboxyfluorescein labeled EA7, the observed fluorescence intensity and concentrations of four types of LPSs in drinking water are linearly correlated. The lower detection limit of the LPS is 3 ng·mL−1. Compared to multi-target mixed selection and conventional SELEX methods, the new orientation selection strategy produces results that are less uncertain.

An improved orientation selection strategy in capture-SELEX procedures was developed to screen broad-spectrum aptamers against lipopolysaccharides by using magnetic nanoparticles. Two Gram-negative bacteria were used as orientation molecules after library preconcentrated to a certain degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Erridge C, Bennett-Guerrero E, Poxton IR (2002) Structure and function of lipopolysaccharides. Microbes Infect 4(8):15

    Article  Google Scholar 

  2. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. doi:10.1146/annurev.biochem.71.110601.135414

    Article  CAS  Google Scholar 

  3. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D (2016) Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 14(6):337–345. doi:10.1038/nrmicro.2016.25

    Article  CAS  Google Scholar 

  4. Wang X, Zhang C, Shi F, Hu X (2010) Purification and characterization of lipopolysaccharides. Subcell Biochem 53:27–51. doi:10.1007/978-90-481-9078-2_2

    Article  CAS  Google Scholar 

  5. Xu W, Tian J, Shao X, Zhu L, Huang K, Luo Y (2016) A rapid and visual aptasensor for lipopolysaccharides detection based on the bulb-like triplex turn-on switch coupled with HCR-HRP nanostructures. Biosens Bioelectron. doi:10.1016/j.bios.2016.10.012

  6. Mack L, Brill B, Delis N, Groner B (2014) Endotoxin depletion of recombinant protein preparations through their preferential binding to histidine tags. Anal Biochem 466:83–88. doi:10.1016/j.ab.2014.08.020

    Article  CAS  Google Scholar 

  7. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41. doi:10.1007/s00604-014-1308-4

    Article  CAS  Google Scholar 

  8. Rajendran M, Ellington AD (2008) Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal Bioanal Chem 390(4):1067–1075. doi:10.1007/s00216-007-1735-8

    Article  CAS  Google Scholar 

  9. Wu C, Han D, Chen T, Peng L, Zhu G, You M, Qiu L, Sefah K, Zhang X, Tan W (2013) Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc 135(49):18644–18650. doi:10.1021/ja4094617

    Article  CAS  Google Scholar 

  10. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5–6):479–491. doi:10.1007/s00604-013-1156-7

    Article  CAS  Google Scholar 

  11. Wu S, Wang Y, Duan N, Ma H, Wang Z (2015) Colorimetric Aptasensor based on enzyme for the detection of vibrio parahemolyticus. J Agric Food Chem 63(35):7849–7854. doi:10.1021/acs.jafc.5b03224

    Article  CAS  Google Scholar 

  12. Zhu C, Zhang G, Huang Y, Yan J, Chen A (2016) Aptamer based ultrasensitive determination of the β-adrenergic agonist ractopamine using PicoGreen as a fluorescent DNA probe. Microchim Acta 184(2):439–444. doi:10.1007/s00604-016-2032-z

    Article  Google Scholar 

  13. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM (2017) Amperometric aptasensor for ochratoxin a based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker methylene blue. Microchim Acta 184(4):1151–1159. doi:10.1007/s00604-017-2113-7

    Article  CAS  Google Scholar 

  14. Bunka DH, Stockley PG (2006) Aptamers come of age - at last. Nat Rev Microbiol 4(8):588–596. doi:10.1038/nrmicro1458

    Article  CAS  Google Scholar 

  15. Zhou J, Rossi J (2016) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. doi:10.1038/nrd.2016.199

  16. Aquino-Jarquin G, Toscano-Garibay JD (2011) RNA aptamer evolution: two decades of SELEction. Int J Mol Sci 12(12):9155–9171. doi:10.3390/ijms12129155

    Article  CAS  Google Scholar 

  17. Wang J, Gong Q, Maheshwari N, Eisenstein M, Arcila ML, Kosik KS, Soh HT (2014) Particle display: a quantitative screening method for generating high-affinity aptamers. Angew Chem Int Ed Engl 53(19):4796–4801. doi:10.1002/anie.201309334

    Article  CAS  Google Scholar 

  18. Fabian Spill ZBW, Shemirani AI, Ho N, Desai D, Zaman MH (2016) Controlling uncertainty in aptamer selection. PNAS 113(43):12076–12081

    Article  Google Scholar 

  19. Chen X, Huang Y, Duan N, Wu S, Xia Y, Ma X, Zhu C, Jiang Y, Ding Z, Wang Z (2014) Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1. Microchim Acta 181(11–12):1317–1324. doi:10.1007/s00604-014-1260-3

    Article  CAS  Google Scholar 

  20. Stoltenburg R, Nikolaus N, Strehlitz B (2012) Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem 2012:415697. doi:10.1155/2012/415697

    Article  Google Scholar 

  21. Wu Y, Zhan S, Wang L, Zhou P (2014) Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 139(6):1550–1561. doi:10.1039/c3an02117c

    Article  CAS  Google Scholar 

  22. Paniel N, Istamboulie G, Triki A, Lozano C, Barthelmebs L, Noguer T (2017) Selection of DNA aptamers against penicillin G using capture-SELEX for the development of an impedimetric sensor. Talanta 162:232–240. doi:10.1016/j.talanta.2016.09.058

    Article  CAS  Google Scholar 

  23. Spiga FM, Maietta P, Guiducci C (2015) More DNA-aptamers for small drugs: a capture-SELEX coupled with surface Plasmon resonance and high-throughput sequencing. ACS Comb Sci 17(5):326–333. doi:10.1021/acscombsci.5b00023

    Article  CAS  Google Scholar 

  24. Duan N, Gong W, Wu S, Wang Z (2017) Selection and application of ssDNA aptamers against Clenbuterol hydrochloride based on ssDNA library immobilized SELEX. J Agric Food Chem 65(8):1771–1777. doi:10.1021/acs.jafc.6b04951

    Article  CAS  Google Scholar 

  25. Wang L, Liu X, Zhang Q, Zhang C, Liu Y, Tu K, Tu J (2012) Selection of DNA aptamers that bind to four organophosphorus pesticides. Biotechnol Lett 34(5):869–874. doi:10.1007/s10529-012-0850-6

    Article  CAS  Google Scholar 

  26. Wen AQ, Yang QW, Li JC, Lv FL, Zhong Q, Chen CY (2009) A novel lipopolysaccharide-antagonizing aptamer protects mice against endotoxemia. Biochem Biophys Res Commun 382(1):140–144. doi:10.1016/j.bbrc.2009.02.152

    Article  CAS  Google Scholar 

  27. Bruno JG, Carrillo MP, Phillips T (2008) In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes. Folia Microbiol 53(4):8

    Article  Google Scholar 

  28. Ying G, Zhu F, Yi Y, Chen J, Mei J, Zhang Y, Chen S (2015) Selecting DNA aptamers for endotoxin separation. Biotechnol Lett 37(8):1601–1605. doi:10.1007/s10529-015-1839-8

    Article  CAS  Google Scholar 

  29. Ding JL, Gan ST, Ho B (2009) Single-stranded DNA oligoaptamers: molecular recognition and LPS antagonism are length- and secondary structure-dependent. J Innate Immun 1(1):46–58. doi:10.1159/000145542

    Article  CAS  Google Scholar 

  30. Wu S, Duan N, Wang Z, Wang H (2011) Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels. Analyst 136(11):2306–2314. doi:10.1039/c0an00735h

    Article  CAS  Google Scholar 

  31. Wang L, Ye H, Sang H-Q, Wang D-D (2016) Aptamer-based fluorescence assay for detection of Isocarbophos and Profenofos. Chin J Anal Chem 44(5):799–803. doi:10.1016/s1872-2040(16)60933-7

    Article  CAS  Google Scholar 

  32. Yang KA, Barbu M, Halim M, Pallavi P, Kim B, Kolpashchikov DM, Pecic S, Taylor S, Worgall TS, Stojanovic MN (2014) Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nat Chem 6(11):1003–1008. doi:10.1038/nchem.2058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Fund of China [21375049], the special fund for innovation in inspection and detection of food and drug of GDFDA [2015ZX07], Key Research and Development Program of Jiangsu Province [BE2017623, BE2016306], the natural science foundation of Jiangsu Province [BK20140155], China Postdoctoral Science Foundation [2016 T90430], and the Technology Research and Development Program of Suzhou [SYN201513].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Duan, N., Wu, S. et al. Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles. Microchim Acta 184, 4235–4242 (2017). https://doi.org/10.1007/s00604-017-2453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2453-3

Keywords

Navigation