Skip to main content
Log in

A Sensitive and Selective Colorimetric Probe for Cimetidine Determination Based on Surface Plasmon Resonance of Chitosan-Encapsulated Gold Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the present study, a simple, facile, and highly selective colorimetric method is reported for cimetidine assay based on antiaggregation of in situ formed gold nanoparticles (AuNPs). The partially aggregated AuNPs were produced using ascorbic acid and chitosan in acidic media. The presence of cimetidine during formation of AuNPs led to the production of more dispersed nanoparticles resulting in a color change from blue to red. Consequently, monitoring of surface plasmon resonance absorbance of in situ formed AuNPs presents a reliable colorimetric probe for the determination of cimetidine. This plasmonic nanoprobe exhibits highly sensitive detection of cimetidine at concentrations as low as 2.7 ng mL−1 and is capable of quantitative assay of cimetidine over a range of 3.3–65.6 ng mL−1. The relative standard deviation corresponding to eight replicate determinations of 49.2 ng mL−1 of cimetidine was 4.1%. The method was highly selective toward many cations, anions, and sulfur-containing compounds. This sensing nanoprobe was effectively used for the rapid determination of cimetidine in tablet formulations and human serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Winship DH (1978) Cimetidine in the treatment of duodenal ulcer: review. Gastroenterology 74:402–406

    Article  CAS  Google Scholar 

  2. Lee S, Jung D, Kho Y, Ji K, Kim P, Ahn B, Choi K (2015) Ecotoxicological assessment of cimetidine and determination of its potential for endocrine disruption using three test organisms: Daphnia magna, Moina macrocopa, and Danio rerio. Chemosphere 135:208–216. https://doi.org/10.1016/j.chemosphere.2015.04.033

    Article  PubMed  CAS  Google Scholar 

  3. Deveney CW, Stein S, Way LW (1983) Cimetidine in the treatment of Zollinger-Ellison syndrome. Am J Surg 140:116–123. https://doi.org/10.1016/0002-9610(83)90271-4

    Article  Google Scholar 

  4. Florey K (1985) Analytical profiles of drug substances. J Pharm Sci 74:907–908

    Google Scholar 

  5. Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147(1):S127–S135. https://doi.org/10.1038/sj.bjp.0706440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kumar KG, Jayashree R (1993) Determination of cimetidine in pure form and in dosage forms using N- bromosuccinimide. J Pharm Biomed Anal 11:165–167. https://doi.org/10.1016/0731-7085(93)80137-P

    Article  PubMed  CAS  Google Scholar 

  7. Kelani KM, Aziz AM, Hegazy MA, Abdel Fattah L (2002) Different spectrophotometric methods for the determination of cimetidine, ranitidine hydrochloride, and famotidine. Spectrosc Lett 35(4):543–563. https://doi.org/10.1081/SL-120013890

    Article  CAS  Google Scholar 

  8. Garcia S, Albero I, Sánchez-Pedrenõ C, Abuherba MS (2003) Spectrophotometric determination of cimetidine in pharmaceuticals and urine using batch and flow-injection methods. J Pharm Biomed Anal 32(4–5):1003–1010. https://doi.org/10.1016/S0731-7085(03)00202-4

    Article  PubMed  CAS  Google Scholar 

  9. Darwish IA, Hussein SA, Mahmoud AM, Hassan AI (2008) A sensitive spectrophotometric method for the determination of H2-receptor antagonists by means of N-bromosuccinimide and p-aminophenol. Acta Pharma 58(1):87–97. https://doi.org/10.2478/v10007-007-0047-z

    Article  CAS  Google Scholar 

  10. Darwish IA, Hussein SA, Mahmoud AM, Hassan AI (2007) Spectrophotometric determination of H2-receptor antagonists via their oxidation with cerium(IV). Spectrochim Acta Part A 69(1):33–40. https://doi.org/10.1016/j.saa.2007.03.005

    Article  CAS  Google Scholar 

  11. Iqbal T, Karyekar Ch S, Kinjo M, Ngan GC, Dowling Th C (2004) Validation of a simplified method for determination of cimetidine in human plasma and urine by liquid chromatography with ultraviolet detection. J Chromatogr B 799(2):337–341. https://doi.org/10.1016/j.jchromb.2003.10.030

    Article  CAS  Google Scholar 

  12. Ashiru DAI, Patel R, Basit AW (2007) Simple and universal HPLC-UV method to determine cimetidine, ranitidine, famotidine and nizatidine in urine: application to the analysis of ranitidine and its metabolites in human volunteers. J Chromatogr B 860(2):235–240. https://doi.org/10.1016/j.jchromb.2007.10.029

    Article  CAS  Google Scholar 

  13. Shafi N, Siddiqui FA, Naseem H, Sher N, Zubair A, Hussain A, Sial AA, Tasawer Baig M (2013) An overview of analytical determination of diltiazem, cimetidine, ranitidine, and famotidine by UV spectrophotometry and HPLC technique. J Chem 2013:1:1–1:116. https://doi.org/10.1155/2013/184948

    Article  CAS  Google Scholar 

  14. Zendelovska D, Stafilov T (2003) Development of an HPLC method for the determination of ranitidine and cimetidine in human plasma following SPE. J Pharm Biomed Anal 33(2):165–173. https://doi.org/10.1016/S0731-7085(03)00265-6

    Article  PubMed  CAS  Google Scholar 

  15. Jantratid E, Prakongpan S, Oley JPF, Dressman JB (2007) Convenient and rapid determination of cimetidine in human plasma using perchloric acid-mediated plasma protein precipitation and high-performance liquid chromatography. Biomed Chromatogr 21(9):949–957. https://doi.org/10.1002/bmc.838

    Article  PubMed  CAS  Google Scholar 

  16. Mihaly GW, Cockbain S, Jones DB, Hanson RG, Smallwood RA (1982) High-pressure liquid chromatographic determination of cimetidine in plasma and urine. J Pharm Sci 71(5):590–592. https://doi.org/10.1002/jps.2600710528

    Article  PubMed  CAS  Google Scholar 

  17. Sousa CEMD, Tabosa MAM, Lima END, Filho JHD, Bedor DCG, Leal LB, Santana DPD (2014) Development of a simple and rapid method for the determination of cimetidine in human plasma by high performance liquid chromatography-mass spectrometry (HPLC-MS/MS): application to a bioequivalence study. Afr. J Pharm Pharmacol 8(46):1156–1163. https://doi.org/10.5897/AJPP2014.4155

    Article  CAS  Google Scholar 

  18. Luo JW, Chen HW, He QH (2001) Determination of cimetidine in human plasma by use of coupled-flow injection, solid-phase extraction, and capillary zone electrophoresis. Chromatographia 53(5):295–300. https://doi.org/10.1007/BF02490427

    Article  CAS  Google Scholar 

  19. Arrowood S, Hoyt AM (1991) Determination of cimetidine in pharmaceutical preparations by capillary zone electrophoresis. J Chromatogr 586(1):177–l80

    Article  Google Scholar 

  20. Shamsipur M, Jalali F, Haghgoo S (2002) Preparation of a cimetidine ion-selective electrode and its application to pharmaceutical analysis. J Pharm Biomed Anal 27:867–872. https://doi.org/10.1016/0021-9673(91)80039-J

    Article  PubMed  CAS  Google Scholar 

  21. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28. https://doi.org/10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  22. Gupta RK, Ying G, Srinivasan MP, Lee PS (2012) Covalent assembly of gold nanoparticles: an application toward transistor memory. J Phys Chem B 116(32):9784–9790. https://doi.org/10.1021/jp3008283

    Article  PubMed  CAS  Google Scholar 

  23. RitheshRaj D, Prasanth S, Vineeshkumar TV, Sudarsanakumar C (2016) Surface plasmon resonance based fiber optic sensor for mercury detection using gold nanoparticles PVA hybrid. Opt Commun 367:102–107. https://doi.org/10.1016/j.optcom.2016.01.027

    Article  CAS  Google Scholar 

  24. Deymehkar E, Taher MA, Karami C, Arman A (2018) Synthesis of SPR nanosensor using gold nanoparticles and its application to copper (II) determination. Silicon 10(4):1329–1336. https://doi.org/10.1007/s12633-017-9608-z

    Article  CAS  Google Scholar 

  25. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2(3):1–6. https://doi.org/10.1186/1477-3155-2-3

    Article  Google Scholar 

  26. Fang W, Chen W, Yang J (2014) Colorimetric determination of DNA concentration and mismatches using hybridization-mediated growth of gold nanoparticle probes. Sens Actuator B 192:77–82. https://doi.org/10.1016/j.snb.2013.10.052

    Article  CAS  Google Scholar 

  27. Rawat KA, Kailasa SK (2016) 4-Amino nicotinic acid mediated synthesis of gold nanoparticles for visual detection of arginine, histidine, methionine and tryptophan. Sens Actuator B 222:780–789. https://doi.org/10.1016/j.snb.2015.09.003

    Article  CAS  Google Scholar 

  28. Attia AK, Badawy AM, Abd-Elhamid SG (2016) Determination of sparfloxacin and besifloxacin hydrochlorides using gold nanoparticles modified carbon paste electrode in micellar medium. RSC Adv 6:39605–39617. https://doi.org/10.1039/C6RA04851J

    Article  CAS  Google Scholar 

  29. Zhang X, Zheng L, He Y (2016) Creatinine-modified gold nanoparticles for highly sensitive colorimetric sensing of nitroguanidine explosive. Plasmonics 11(6):1573–1578. https://doi.org/10.1007/s11468-016-0212-7

    Article  CAS  Google Scholar 

  30. Wang C, Yu C (2013) Detection of chemical pollutants in water using gold nanoparticles as sensors: a review. Rev Anal Chem 32:1–14. https://doi.org/10.1515/revac-2012-0023

    Article  CAS  Google Scholar 

  31. Jin Y, Li Z, Hu L, Shi X, Guan W, Du Y (2013) Synthesis of chitosan-stabilized gold nanoparticles by atmospheric plasma. Carbohydr Polym 91(1):152–156. https://doi.org/10.1016/j.carbpol.2012.08.018

    Article  PubMed  CAS  Google Scholar 

  32. Huang H, Yang X (2004) Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules 5(6):2340–2346. https://doi.org/10.1021/bm0497116

    Article  PubMed  CAS  Google Scholar 

  33. Guan H, Yu J, Chi D (2013) Label-free colorimetric sensing of melamine based on chitosan- stabilized gold nanoparticles probes. Food Control 32:35–41. https://doi.org/10.1016/j.foodcont.2012.11.041

    Article  CAS  Google Scholar 

  34. Chen Z, Wang Z, Chen X, Xu H, Liu J (2013) Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. J Nanopart Res 15:1930–1939. https://doi.org/10.1007/s11051-013-1930-9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goia DV, Matijević E (1999) Tailoring the particle size of monodispersed colloidal gold. Colloid Surface A 146(1):139–152. https://doi.org/10.1016/S0927-7757(98)00790-0

    Article  CAS  Google Scholar 

  36. Du CL, Yang MX, You YM, Chen T, Chen HY, Shen ZX (2009) Polymer-encapsulated silver nanoparticle monomer and dimer for surface-enhanced Raman scattering. Chem Phys Lett 473(4):317–320. https://doi.org/10.1016/j.cplett.2009.03.086

    Article  CAS  Google Scholar 

  37. (2010) British Pharmacopoeia, vol 1. The Stationery Office Ltd., London, pp 501–502

Download references

Funding

The authors wish to thank Shahid Chamran University of Ahvaz for financial support of this project (Grant 1396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadat Rastegarzadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, Z.B., Rastegarzadeh, S. & Kiasat, A. A Sensitive and Selective Colorimetric Probe for Cimetidine Determination Based on Surface Plasmon Resonance of Chitosan-Encapsulated Gold Nanoparticles. Plasmonics 14, 1169–1177 (2019). https://doi.org/10.1007/s11468-019-00905-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00905-0

Keywords

Navigation