Skip to main content
Log in

A fluorescence based immunoassay for galectin-4 using gold nanoclusters and a composite consisting of glucose oxidase and a metal-organic framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a fluorescence immunoassay for galectin-4, a candidate biomarker for various cancers. Glucose oxidase was encapsulated into a zeolitic imidazolate framework to give a composite (GOx/ZIF-8 composite) that acts as a signal-transduction tag via a biomimetic mineralization process. After modification of the composite with streptavidin, it binds biotinylated antibody against galectin-4. In the immunoassay, the response to galectin-4 results from the enzymatic oxidation of glucose. This reaction produces hydrogen peroxide (H2O2) that reacts with iron(II) ions to generate hydroxy radical (•OH), which leads to the quenching of the fluorescence of gold nanoclusters (AuNCs). Accordingly, the fluorescence quenching of AuNCs depends on the concentration of target galectin-4. The GOx/ZIF-8 composite has a high loading capacity for GOx at uncompromised enzymatic activity. The fluorescence of AuNCs is sensitively quenched by •OH radicals. Galectin-4 can be detected by this method in concentrations as low as 10 pg·mL−1. It is expected that this kind of enzyme/MOF composite-based immunoassay has a wide scope in that it may be adapted to other low-abundance proteins and biomarkers.

Schematic of a fluorescence immunoassay for galectin-4, a candidate biomarker for various cancers. It is based on a composite consisting of glucose oxidase and a metal-organic framework (GOx/ZIF-8 composite) as well as gold nanoclusters (AuNC)-iron(II) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41

    Article  CAS  Google Scholar 

  2. Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, Chen C, Rhodes JM, Yu LG (2011) Serum galectin-2, −4, and-8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res 17:7035–7046

    Article  CAS  Google Scholar 

  3. Huflejt ME, Leffler H (2003) Galectin-4 in normal tissues and cancer. Glycoconj J 20:247–255

    Article  Google Scholar 

  4. Kim SW, Park KC, Jeon SM, Ohn TB, Kim TI, Kim WH, Cheon JH (2013) Abrogation of galectin-4 expression promotes tumorigenesis in colorectal cancer. Cell Oncol 36:169–178

    Article  CAS  Google Scholar 

  5. Yoshioka K, Sato Y, Murakami T, Tanaka M, Niwa O (2010) One-step detection of galectins on hybrid monolayer surface with protruding lactoside. Anal Chem 82:1175–1178

    Article  CAS  Google Scholar 

  6. Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18

    Article  CAS  Google Scholar 

  7. Tang J, Huang Y, Liu H, Zhang C, Tang D (2016) Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers. Biosens Bioelectron 79:508–514

    Article  CAS  Google Scholar 

  8. Pal S, Bhand S (2015) Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen. Microchim Acta 182:1643–1651

    Article  CAS  Google Scholar 

  9. Liu D, Yang J, Wang HF, Wang Z, Huang X, Wang Z, Niu G, Walker ARH, Chen X (2014) Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal Chem 86:5800–5806

    Article  CAS  Google Scholar 

  10. Lai W, Tang D, Zhuang J, Chen G, Yang HH (2014) Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate. Anal Chem 86:5061–5068

    Article  CAS  Google Scholar 

  11. Guo Q, Li X, Shen C, Zhang S, Qi H, Li T, Yang M (2015) Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchim Acta 182:1483–1489

    Article  CAS  Google Scholar 

  12. Li J, Wu LJ, Guo SS, Fu HE, Chen GN, Yang HH (2013) Simple colorimetric bacterial detection and high-throughput drug screening based on a graphene-enzyme complex. Nano 5:619–623

    CAS  Google Scholar 

  13. Xu H, Wang D, He S, Li J, Feng B, Ma P, Xu P, Gao S, Zhang S, Liu Q, Lu J, Song S, Fan C (2013) Graphene-based nanoprobes and a prototype optical biosensing platform. Biosens Bioelectron 50:251–255

    Article  CAS  Google Scholar 

  14. Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011

    Article  CAS  Google Scholar 

  15. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  Google Scholar 

  16. Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993

    Article  CAS  Google Scholar 

  17. Silva P, Vilela SMF, Tomé JPC, Paz FAA (2015) Multifunctional metal-organic frameworks: from academia to industrial applications. Chem Soc Rev 44:6774–6803

    Article  CAS  Google Scholar 

  18. Lyu F, Zhang Y, Zare RN, Ge J, Liu Z (2014) One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett 14:5761–5765

    Article  CAS  Google Scholar 

  19. Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240

    Article  CAS  Google Scholar 

  20. Wu X, Ge J, Yang C, Hou M, Liu Z (2015) Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem Commun 51:13408–13411

    Article  CAS  Google Scholar 

  21. Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88:5489–5497

    Article  CAS  Google Scholar 

  22. Ando M, Kamimura T, Uegaki K, Biju V, Shigeri Y (2016) Sensing of ozone based on its quenching effect on the photoluminescence of CdSe-based core-shell quantum dots. Microchim Acta 183:3019–3024

    Article  CAS  Google Scholar 

  23. Chen LY, Wang CW, Yuan Z, Chang HT (2014) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229

    Article  Google Scholar 

  24. Zhang XL, Zheng C, Guo SS, Li J, Yang HH, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434

    Article  CAS  Google Scholar 

  25. Chen T, Hu Y, Cen Y, Chu X, Lu Y (2013) A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J Am Chem Soc 135:11595–11602

    Article  CAS  Google Scholar 

  26. Xia X, Long Y, Wang J (2013) Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal Chim Acta 772:81–86

    Article  CAS  Google Scholar 

  27. Jin L, Shang L, Guo S, Fang Y, Wen D, Wang L, Yin J, Dong S (2011) Biomolecule-stabilized au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens Bioelectron 26:1965–1969

    Article  CAS  Google Scholar 

  28. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, Xie J (2012) From aggregation-induced emission of au(I)-thiolate complexes to ultrabright au(0)@au(I)-thiolate core-shell nanoclusters. J Am Chem Soc 134:16662–16670

    Article  CAS  Google Scholar 

  29. Yang SH, Kang SM, Lee KB, Chung TD, Lee H, Choi IS (2011) Mussel-inspired encapsulation and functionalization of individual yeast cells. J Am Chem Soc 133:2795–2797

    Article  CAS  Google Scholar 

  30. Hu L, Deng L, Alsaiari S, Zhang D, Khashab NM (2014) “light-on” sensing of antioxidants using gold nanoclusters. Anal Chem 86:4989–4994

    Article  CAS  Google Scholar 

  31. Wu X, Yang C, Ge J, Liu Z (2015) Polydopamine tethered enzyme/metal–organic framework composites with high stability and reusability. Nano 7:18883–18886

    CAS  Google Scholar 

  32. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Infrastructure Construction Program of Fujian Province (Grant No. 2014Y2005); the specialized Science and Technology Key Project of Fujian Province (Grant No. 2013YZ0002-3); the key project of Science and Technology Department of Fujian Province (Grant No.2014Y0027); the Natural Science Foundation of Fujian Province (Grant No. 2014 J01389 and 2016 J05206); the Guiding Project of Fujian Science and Technology Department (Grant No. 2015Y0056); the Scientific Foundation of the Fujian provincial Health and Family Planning Commission (Grant No. 2015-1-95); the Scientific Foundation of Fuzhou Health Department (Grant No. 2015-S-WQ11); the Scientific Foundation of Fuzhou (Grant No. 2015-S-143-16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Liu or Jingfeng Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zeng, Y., Zheng, A. et al. A fluorescence based immunoassay for galectin-4 using gold nanoclusters and a composite consisting of glucose oxidase and a metal-organic framework. Microchim Acta 184, 1933–1940 (2017). https://doi.org/10.1007/s00604-017-2204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2204-5

Keywords

Navigation