Skip to main content
Log in

Mass-amplifying quantum dots in a fluorescence polarization-based aptasensor for ATP

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a fluorescence polarization assay for the detection of the target analyte ATP by making use of an aptasensor and of mass-amplifying CdTe-CdS quantum dots. The ATP aptamer was modified with digoxin antigen and hybridized with its complementary DNA that was modified with the CdTe-CdS quantum dots. Following the addition of digoxin antibody, the mass-amplifying aptasensor probe is formed as a result of the immuno reaction. In the presence of ATP, the polarization of fluorescence decreases because the digoxin antibody becomes dissociated due to the recognition of the ATP by the ATP aptamer. Under optimized conditions, the method has a linear response to ATP in the 10 to 350 μM concentration range, and the limit of detection is 3.7 μM. The method combines the specific recognition capability of aptamers with the sensitivity of an immunoreaction. It has good selectivity and sensitivity, and can be used to detect ATP in serum samples.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Freeman R, Girsh J, Jou AFJ, Ho JA, Hug T, Dernedde J, Willner I (2012) Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem 84(14):6192–6198

    Article  CAS  Google Scholar 

  2. Gang-Il K, Kyung-Woo K, Min-Kyu O, Yun-Mo S (2009) The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology 20:175503

    Article  Google Scholar 

  3. Cuiping M, Wenshuo W, Qing Y, Chao S, Lijie C (2011) Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Biosens Bioelectron 26:3309–3312

    Article  Google Scholar 

  4. Boeneman K, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Melinger JS, Ancona M, Stewart MH, Susumu K, Huston A, Medintz IL (2010) Self-assembled quantum dot-sensitized multivalent DNA photonic wires. J Am Chem Soc 132(51):18177–18190

    Article  CAS  Google Scholar 

  5. Feng X, Xiaoteng L, I-Ming H (2012) Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signa amplification by Exonuclease III-assisted target recycling. Anal Chem 84:5216–5220

    Article  Google Scholar 

  6. Gasparac R, Taft BJ, Lapierre-Devlin MA, Lazareck AD, Xu JM, Kelley SO (2004) Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. J Am Chem Soc 126(39):12270–12271

    Article  CAS  Google Scholar 

  7. Wang J, Liu G, Merkoçi A (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 125(11):3214–3215

    Article  CAS  Google Scholar 

  8. Chunwei C, Yehhsing L, Yishan L, Linchi C (2011) A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection. Biosens Bioelectron 26:3346–3352

    Article  Google Scholar 

  9. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  10. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  11. Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797

    Article  CAS  Google Scholar 

  12. Li M, Wang QY, Shi XD, Hornak LA, Wu NQ (2011) Detection of mercury (II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal Chem 83:7061–7065

    Article  CAS  Google Scholar 

  13. Medintz IL, Berti L, Pons T, Grimes AF, Douglas SE, Alessandrini A, Facci P, Mattoussi H (2007) A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett 7(6):1741–1748

    Article  CAS  Google Scholar 

  14. Giljohann A, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261

    Article  Google Scholar 

  15. Cho EJ, Yang L, Levy M, Ellington AD (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J Am Chem Soc 127:2022–2023

    Article  CAS  Google Scholar 

  16. Xiaoqing L, Freeman R, Eyal G, Itamar W (2011) Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano 5:7648–7655

    Article  Google Scholar 

  17. Xiaoqing L, Ronit F, Itamar W (2012) Amplified fluorescence aptamer-based sensors using Exonuclease III for the regeneration of the analyte. Chem Eur J 18:2207–2211

    Article  Google Scholar 

  18. Lianzhe H, Zheng B, Haijuan L, Shuang H, Yali Y, Lianxun G, Guobao X (2009) [Ru(bpy)2dppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor. Anal Chem 8:9807–9811

    Google Scholar 

  19. Hongwei G, Mengying X, Li X, Wei S (2011) Sensitive determination of ATP using a carbon paste electrode modified with a carboxyl functionalized ionic liquid. Microchim Acta 174:115–122

    Article  Google Scholar 

  20. Maragos CM, Plattner RD (2002) Rapid fluorescence polarization immunoassay for the mycotoxin deoxynivalenol in wheat. J Agric Food Chem 50:1827–1832

    Article  CAS  Google Scholar 

  21. Kolisova AY, Park JH, Eremin SA, Kang SJ, Chung DH (2003) Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of the organophosphorus pesticide parathion-methyl. J Agric Food Chem 51:1107–1114

    Article  Google Scholar 

  22. Shim WB, Yakovleva ME, Kim KY, Nam BR, Vylegzhanin ESA, Komarov AA, Eremin SA, Chung DH (2009) Development of fluorescence polarization immunoassay for the rapid detection of 6-chloronicotinic acid: main metabolite of eonicotinoid insecticides. J Agric Food Chem 57:791–796

    Article  CAS  Google Scholar 

  23. Ye BC, Yin BC (2008) Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem Int Ed 47:8386–8389

    Article  CAS  Google Scholar 

  24. Wang ZH, Zhang SX, Nesterenk IS, Eremin SA, Shen JZ (2007) Monoclonal antibody-based fluorescence polarization immunoassay for sulfamethoxypyridazine and sulfachloropyridazine. J Agric Food Chem 55:6871–6878

    Article  CAS  Google Scholar 

  25. Tanabe A, Mitobe H, Kawata K, Yasuhara A, Shibamoto T (2001) Seasonal and spatial studies on pesticide residues in surface waters of the Shinano river in Japan. J Agric Food Chem 49(8):3847–3852

    Article  CAS  Google Scholar 

  26. Eremin SA, Murtazina NR, Ermolenko DN, Zherdev AV, Mart’ianov AA, Yazynina EV, Michura IV, Formanovsky AA, Dzantiev BB (2005) Production of polyclonal antibodies and development of fluorescence polarization immunoassay for sulfanilamide. Anal Lett 38(6):951–969

    Article  CAS  Google Scholar 

  27. Cruz-Aguado JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80:8853–8855

    Article  CAS  Google Scholar 

  28. Ruta J, Perrier S, Ravelet C, Fize J, Peyrin E (2009) Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Anal Chem 81(17):7468–7473

    Article  CAS  Google Scholar 

  29. Huang Y, Zhao SL, Chen ZF, Liu YC, Liang H (2011) Ultrasensitive endonuclease activity and inhibition detection using gold nanoparticle-enhanced fluorescence polarization. Chem Commun 47:4763–4765

    Article  CAS  Google Scholar 

  30. Terpetschnig E, Szmacinski H, Lakowicz JR (1995) Fluorescence polarization immunoassay of a high-molecular-weight antigen based on a long-lifetime Ru-ligand complex. Anal Biochem 227:140–147

    Article  CAS  Google Scholar 

  31. María LSM, María PAC, Agustina GH (2007) Long-wavelength fluorescence polarization immunoassay: determination of amikacin on solid surface and gliadins in solution. Anal Chem 79:7424–7430

    Article  Google Scholar 

  32. Mattoussi H, Mauro JM, Goldman ER, George PA, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  33. Sharon E, Freeman R, Willner I (2010) CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal Chem 82:7073–7077

    Article  CAS  Google Scholar 

  34. Dong HF, Gao WC, Yan F, Ji HC, Ju HX (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    Article  CAS  Google Scholar 

  35. Megan AH, Joel ST, Todd DK (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869

    Article  Google Scholar 

  36. Chen L, Zhang XW, Zhou GH, Xiang X, Ji XH, Zheng ZH, He ZK, Wang HZ (2012) Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal Chem 84(7):3200–3207

    Article  CAS  Google Scholar 

  37. Meimei S, Lingyun D, Suqin G, Yuhong B, Shuhao W (2010) Determination of 17β-oestradiol by fluorescence immunoassay with streptavidin-conjugated quantum dots as label. Steroids 75(6):400–403

    Article  Google Scholar 

  38. Huang Y, Zhao SL, Shi M, Chen J, Chen ZF, Liang H (2011) Intermolecular and intramolecular quencher based quantum dot nanoprobes for multiplexed detection of endonuclease activity and inhibition. Anal Chem 83(23):8913–8918

    Article  CAS  Google Scholar 

  39. Jianniao T, Rongjun L, Yanchun Z, Yan P, Xue H, Qing X, Shulin Z (2010) Synthesis of CdTe/CdS/ZnS quantum dots and their application in imaging of hepatocellular carcinoma cells and immunoassay for alpha fetoprotein. Nanotechnology 21(30):35101–35108

    Google Scholar 

  40. Jianniao T, Liujin Z, Yanchun Z, Yuan W, Yan P, Shulin Z (2012) Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 92:72–77

    Article  Google Scholar 

  41. Jianniao T, Liujin Z, Yanchun Z, Yuan W, Yan P, Xue H, Shulin Z (2012) The application of CdTe/CdS in the detection of carcinoembryonic antigen by fluorescence polarization immunoassay. J Fluoresc 22:1571–1579

    Article  Google Scholar 

  42. Xue FL, Chen JY, Guo J, Wang CC, Yang WL, Wang PN, Lu DR (2007) Enhancement of intracellular delivery of CdTe quantum dots (QDs) to living cells by Tat conjugation. J Fluoresc 17:149–154

    Article  CAS  Google Scholar 

  43. Bullen C, Lakowicz PM (2006) The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 22:3007–3013

    Article  CAS  Google Scholar 

  44. Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22

    Article  CAS  Google Scholar 

  45. Sarita S, Shirmir DB, Mehnaaz FA (2012) GOx signaling triggered by aptamer-based ATP detection. Chem Commun 48:9284–9286

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by National Natural Science Foundation of China (No. 21165004, 21163002), the Guangxi Natural Science Foundation of China (2010GXNSFF013001, 0728043, 2012GXNSFBA053022), Innovation Plan in Graduate Education of Guangxi Province (2010106020703M70) and the project of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources(Guangxi Normal University), Ministry of Education of China(CMEMR2011-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianniao Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, J., Wang, Y., Chen, S. et al. Mass-amplifying quantum dots in a fluorescence polarization-based aptasensor for ATP. Microchim Acta 180, 203–209 (2013). https://doi.org/10.1007/s00604-012-0919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0919-x

Keywords

Navigation