Skip to main content
Log in

Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The paper describes a sensitive method for simultaneous sensing of morphine (MOR) and diclofenac (DCF). The surface of a MgFe2O4/graphite paste electrode was modified with multi-walled carbon nanotubes, and the resulting sensor was characterized by cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The electrode showed an efficient synergistic effect in term of oxidation of DCF and MOR, with sharp oxidation peaks occurring at +0.370 and 0.540 V (vs Ag/AgCl) at pH 7.0. The calibration plot for MOR is linear in the 50 nM to 920 μM concentration range, and the detection limit is 10 nM (at a signal-to-noise ratio of 3). The respective data for DCF are 100 nM to 580 μM, with a 60 nM LOD. The sensor was applied to the determination of MOR and DCF in spiked serum and urine samples, with recoveries ranging between 91.4 and 100.7 %.

A sensitive method for simultaneous sensing of morphine (MOR) and diclofenac (DCF) is described. The surface of MgFe2O4/graphite paste electrode was modified with multi-walled carbon nanotubes, and the resulting sensor showed an efficient synergistic effect in terms of oxidation of DCF and MOR. The calibration plot for MOR is linear in the 50 nM to 920 μM concentration range, and the detection limit is 10 nM. The respective data for DCF are 100 nM to 580 μM, with a 60 nM LOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Enna SJ, Bylund DB (2008) The comprehensive pharmacology reference. Elsevier Inc

  2. Miranda HF, Silva E, Pinardi G (2004) Synergy between the antinociceptive effects of morphine and NSAIDs. Can J Physiol Pharmacol 82:331–337

    Article  CAS  Google Scholar 

  3. Sun HL, Wu CC, Lin MS, Chang CF (1993) Effects of epidural morphine and intramuscular diclofenac combination in Postcesarean analgesia: a dose-range study. Anesth Analg 76:284–288

    CAS  Google Scholar 

  4. Ensafi AA, Izadi M, Karimi-Maleh H (2013) Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 19:137–144

    Article  CAS  Google Scholar 

  5. Talemi RP, Mashhadizadeh MH (2015) A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode. Talanta 131:460–466

    Article  CAS  Google Scholar 

  6. Nigović B, Sadiković M, Sertić M (2014) Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphine. Talanta 122:187–194

    Article  Google Scholar 

  7. Ahmar H, Tabani H, Koruni MH, Davarani SSH, Fakhari AR (2014) A new platform for sensing urinary morphine based on carrier assisted electromembrane extraction followed by adsorptive stripping voltammetric detection on screen-printed electrode. Biosens Bioelectron 54:189–194

    Article  CAS  Google Scholar 

  8. Pournaghi-Azar MH, Saadatirad A (2008) Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. J Electroanal Chem 624:293–298

    Article  CAS  Google Scholar 

  9. Sanati AL, Karimi-Maleh H, Badiei A, Biparva P, Ensafi AA (2014) A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater Sci Eng C 35:379–385

    Article  CAS  Google Scholar 

  10. Fei W, Chen F, Sun L, Li Q, Yang J, Wu Y (2014) Ultrasensitive electrochemiluminescent immunoassay for morphine using a gold electrode modified with CdS quantum dots, polyamidoamine, and gold nanoparticles. Microchim Acta 181:419–425

    Article  CAS  Google Scholar 

  11. Mokhtari A, Karimi-Maleh H, Ensafi AA, Beitollahi H (2012) Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sensors Actuators B 169:96–105

    Article  CAS  Google Scholar 

  12. Ensafi AA, Abarghoui MM, Rezaei B (2015) Simultaneous determination of morphine and codeine using Ptnanoparticles supported on porous silicon flour modified ionic liquid carbon paste electrode. Sensors Actuators B 219:1–9

    Article  CAS  Google Scholar 

  13. Afkham A, Bahiraei A, Madrakian T (2016) Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater Sci Eng C 59:168–176

    Article  Google Scholar 

  14. Taei M, Hadadzadeh H, Hasanpour F, Tavakkoli N, Dolatabadi MH (2015) Simultaneous electrochemical determination of ascorbic acid, epinephrine, and uric acid using a polymer film-modified electrode based on Au nanoparticles/poly(3,3′,5,5′-tetrabromo-m-cresolsulfonphthalein). Ionics 21:3267–3278

    Article  CAS  Google Scholar 

  15. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  16. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  17. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703

    Article  CAS  Google Scholar 

  18. Treachy MM, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  Google Scholar 

  19. Ensafi AA, Karimi-Maleh H (2010) Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J Electroanal Chem 640:75–83

    Article  CAS  Google Scholar 

  20. Xu Q, Wang SF (2005) Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchim Acta 151:47–52

    Article  CAS  Google Scholar 

  21. Sun Y, Fei J, Hou J, Zhang Q, Liu Y, Hu B (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373–379

    Article  CAS  Google Scholar 

  22. Zhang Y, Kang TF, Wan YW, Chen SY (2009) Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchim Acta 165:307–311

    Article  CAS  Google Scholar 

  23. Wei S, Zhao F, Xu Z, Zeng B (2006) Voltammetric determination of folic acid with a multi-walled carbon nanotube-modified gold electrode. Microchim Acta 152:285–290

    Article  CAS  Google Scholar 

  24. Wu FH, Zhao GC, Wei XW, Yang ZS (2004) Electrocatalysis of tryptophan at multi-walled carbon nanotube modified electrode. Microchim Acta 144:243–247

    Article  CAS  Google Scholar 

  25. Shakir I, Sarfraza M, Ali Z, Aboud MFA, Agboola PO (2016) Magnetically separable and recyclable graphene-MgFe2O4 nanocomposites for enhanced photocatalytic applications. J Alloys Compd 660:450–455

    Article  CAS  Google Scholar 

  26. Rai AK, Thi TV, Gim J, Kim J (2014) Combustion synthesis of MgFe2O4/graphene nanocomposite as a high-performance negative electrode for lithium ion batteries. Mater Charact 95:259–265

    Article  CAS  Google Scholar 

  27. Chen Q, Rondinone AJ, Chakoumakos BC, Zhang ZJ (1999) Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J Magn Magn Mater 194:1–7

    Article  CAS  Google Scholar 

  28. Hackett LP, Dusci LJ, Ilett KF, Chiswell GM (2002) Optimizing the hydrolysis of codeine and morphine glucuronides in urine. Therap Drug Monit 24:652–657

    Article  CAS  Google Scholar 

  29. Chen T, Dai L (2013) Carbon nanomaterials for highperformance supercapacitors. Mater Today 16:272–280

    Article  CAS  Google Scholar 

  30. Ensafi AA, Arashpour B, Rezaei B, Allafchian AR (2014) Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe2O4 magnetic nanoparticles decorated withmultiwall carbon nanotubes. Mater Sci Eng C 39:78–85

    Article  CAS  Google Scholar 

  31. Khot VM, Salunkhe AB, Thorat ND, Ningthoujam RS, Pawar SH (2013) Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans 42:1249–1258

    Article  CAS  Google Scholar 

  32. Dehdashtian S, Gholivand MB, Shamsipur M, Kariminia S (2016) Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier. Mater Sci Eng C 58:53–59

    Article  CAS  Google Scholar 

  33. Goodarzian M, Khalilzade MA, Karimi F, Gupta VK, Keyvanfard M, Bagheri H, Fouladgar M (2014) Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J Mol Liq 197:114–119

    Article  CAS  Google Scholar 

  34. Sarwar M, Aman T (1984) Spectrophotometric determination of morphine. Microchem J 30:304–309

    Article  CAS  Google Scholar 

  35. Khaskheli AR, Sarajuddin S, Abro K, Sherazi STH, Afridi HI, Mahesar SA, Saeed M (2009) Simpler and faster spectrophotometric determination of diclofenac sodium in tablets, serum and urine samples. Pak J Anal Environ Chem 10:53–58

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Taei.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basiri, F., Taei, M. Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine. Microchim Acta 184, 155–162 (2017). https://doi.org/10.1007/s00604-016-1995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1995-0

Keywords

Navigation