Skip to main content
Log in

Identification of genetically modified DNA found in Roundup Ready soybean using gold nanoparticles

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an SPR sensor chip coated with gold nanoparticles (AuNPs) that enables highly sensitive determination of genetically modified (GM) crops. Detection is based on localized surface plasmon resonance (LSPR) with its known sensitivity to even minute changes in refractive index. The device consists of a halogen light source, a light detector, and a cuvette cell that contains a sensor chip coated with AuNPs. It is operated in the transmission mode of the optical path to enhance the plasmonic signal. The sample solution containing target DNA (e.g. from the GM crop) is introduced into the cuvette with the sensor chip whose surface was functionalized with a capture DNA. Following a 30-min hybridization, the changes of the signal are recorded at 540 nm. The chip responds to target DNA in the 1 to 100 nM concentration range and has a 1 nM detection limit. Features of this sensor chip include a short reaction time, ease of handling, and portability, and this enables on-site detection and in-situ testing.

A localized surface plasmon resonance (LSPR)-based nanoplasmonic spectroscopic device enabling a highly sensitive biosensor is developed for the detection of genetically modified (GM) DNA founded in Roundup Ready (RR) soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Singh OV, Ghai S, Paul D, Jain RK (2006) Genetically modified crops: success, safety assessment, and public concern. Appl Microbiol Biotechnol 71(5):598–607. doi:10.1007/s00253-006-0449-8

    Article  CAS  Google Scholar 

  2. James C (2011) Global Status of Commercialized Biotech/GM Crops: 2011. vol 2011. The International Service for the Acquisition of Agri-biotech Applications (ISAAA),

  3. Brookes G, Barfoot P (2015) Global income and production impacts of using GM crop technology 1996–2013. GM crops & food 6 (1):13–46. doi:10.1080/21645698.2015.1022310

  4. Kuiper HA, Kleter GA, Noteborn HP, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J : for cell and molecular biology 27(6):503–528

    Article  CAS  Google Scholar 

  5. Haslberger AG (2000) Policy forum: genetic technologies. Monitoring and labeling for genetically modified products. Science 287(5452):431–432

    Article  CAS  Google Scholar 

  6. Kamle S, Ali S (2013) Genetically modified crops: detection strategies and biosafety issues. Gene 522(2):123–132. doi:10.1016/j.gene.2013.03.107

    Article  CAS  Google Scholar 

  7. Dinon AZ, Brod FC, Mello CS, Oliveira EM, Faria JC, Arisi AC (2012) Primers and probes development for specific PCR detection of genetically modified common bean (Phaseolus vulgaris) Embrapa 5.1. J Agric Food Chem 60(18):4672–4677. doi:10.1021/jf3011257

    Article  CAS  Google Scholar 

  8. Heide BR, Heir E, Holck A (2008) Detection of eight GMO maize events by qualitative, multiplex PCR and fluorescence capillary gel electrophoresis. Eur Food Res Technol 227(2):527–535. doi:10.1007/s00217-007-0751-4

    Article  CAS  Google Scholar 

  9. Zhu D, Tang Y, Xing D, Chen WR (2008) PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method. Anal Chem 80(10):3566–3571. doi:10.1021/ac0713306

    Article  CAS  Google Scholar 

  10. Jung SH, Jang H, Lim MC, Kim JH, Shin KS, Kim SM, Kim HY, Kim YR, Jeon TJ (2015) Chromatic biosensor for detection of phosphinothricin acetyltransferase by use of polydiacetylene vesicles encapsulated within automatically generated immunohydrogel beads. Anal Chem 87(4):2072–2078. doi:10.1021/ac501795x

    Article  CAS  Google Scholar 

  11. Zhu XL, Chen LL, Shen P, Jia JW, Zhang DB, Yang LT (2011) High Sensitive Detection of Cry1Ab Protein Using a Quantum Dot-Based Fluorescence-Linked Immunosorbent Assay. J Agric Food Chem 59(6):2184–2189. doi:10.1021/jf104140t

    Article  CAS  Google Scholar 

  12. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1(2):219–228. doi:10.2217/17435889.1.2.219

    Article  CAS  Google Scholar 

  13. Hong Y, Huh YM, Yoon DS, Yang J (2012) Nanobiosensors Based on Localized Surface Plasmon Resonance for Biomarker Detection. J Nanomater. doi:10.1155/2012/759830

    Google Scholar 

  14. Acimovic SS, Ortega MA, Sanz V, Berthelot J, Garcia-Cordero JL, Renger J, Maerkl SJ, Kreuzer MP, Quidant R (2014) LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett 14(5):2636–2641. doi:10.1021/nl500574n

    Article  CAS  Google Scholar 

  15. Kim HM, Jin SM, Lee SK, Kim MG, Shin YB (2009) Detection of Biomolecular Binding Through Enhancement of Localized Surface Plasmon Resonance (LSPR) by Gold Nanoparticles. Sensors-Basel 9(4):2334–2344. doi:10.3390/s90402334

    Article  CAS  Google Scholar 

  16. Stobiecka M, Ciesla JM, Janowska B, Tudek B, Radecka H (2007) Piezoelectric sensor for determination of genetically modified soybean Roundup Ready((R)) in samples not amplified by PCR. Sensors-Basel 7(8):1462–1479. doi:10.3390/S7081462

    Article  CAS  Google Scholar 

  17. Goon IY, Lai LMH, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chem Mater 21(4):673–681. doi:10.1021/cm8025329

    Article  CAS  Google Scholar 

  18. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. doi:10.1146/annurev.physchem.58.032806.104607

    Article  CAS  Google Scholar 

  19. Liu Y, Huang CZ (2013) Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles. Nanoscale 5(16):7458–7466. doi:10.1039/c3nr01952g

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Pioneer Research Center Program (NRF-2012-0009575) and National Research Foundation Grant (NRF-2012R1A1B4002413, NRF-2014R1A1A2059341, NRF-2016R1A2B4006987) from National Research Foundation of Korea. This work was also partially supported by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Suk Huh or Tae-Joon Jeon.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Huisoo Jang and Cheol Hwan Kwak contributed equally to this work

Electronic Supplementary Materials

ESM 1

(DOCX 953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H., Kwak, C.H., Kim, G. et al. Identification of genetically modified DNA found in Roundup Ready soybean using gold nanoparticles. Microchim Acta 183, 2649–2654 (2016). https://doi.org/10.1007/s00604-016-1899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1899-z

Keywords

Navigation