Skip to main content

Advertisement

Log in

Genetically modified crops: success, safety assessment, and public concern

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

With the emergence of transgenic technologies, new ways to improve the agronomic performance of crops for food, feed, and processing applications have been devised. In addition, ability to express foreign genes using transgenic technologies has opened up options for producing large quantities of commercially important industrial or pharmaceutical products in plants. Despite this high adoption rate and future promises, there is a multitude of concerns about the impact of genetically modified (GM) crops on the environment. Potential contamination of the environment and food chains has prompted detailed consideration of how such crops and the molecules that they produce can be effectively isolated and contained. One of the reasonable steps after creating a transgenic plant is to evaluate its potential benefits and risks to the environment and these should be compared to those generated by traditional agricultural practices. The precautionary approach in risk management of GM plants may make it necessary to monitor significant wild and weed populations that might be affected by transgene escape. Effective risk assessment and monitoring mechanisms are the basic prerequisites of any legal framework to adequately address the risks and watch out for new risks. Several agencies in different countries monitor the release of GM organisms or frame guidelines for the appropriate application of recombinant organisms in agro-industries so as to assure the safe use of recombinant organisms and to achieve sound overall development. We feel that it is important to establish an internationally harmonized framework for the safe handling of recombinant DNA organisms within a few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed FE (2002) Detection of genetically modified organism in food. Trends Biotechnol 20:215–223

    CAS  PubMed  Google Scholar 

  • Allen GC, Spiken S, Thompson WF (2005) Transgenic integration: use of matrix attachment regions. Methods Mol Biol 286:313–326

    CAS  PubMed  Google Scholar 

  • Anklem E, Gadani F, Heinze P, Pijnenburg H, Eede GVD, Europe, PM (2002) Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. Eur Food Res Technol 214:3–26

    Google Scholar 

  • Auer CA (2003) Tracking genes from seed to supermarket: techniques and traits. Trends Plant Sci 8:591–597

    CAS  PubMed  Google Scholar 

  • Bennett R, Phipps R, Strange S, Grey P (2004) Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment. Plant Biotechnol 2:273–278

    CAS  Google Scholar 

  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillusthuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32:156–173

    CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methyl mercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813

    CAS  PubMed  Google Scholar 

  • Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22:311–318

    CAS  PubMed  Google Scholar 

  • Bordoni R, Mezzelani A, Consolandi C, Frosini A, Rizzi E, Castigloni B, Salati C, Marmiroli N, Marchelli R, Bernardi LR, Battaglia C, Bellis GD (2004) Detection and quantitation of genetically modified maize (Bt-176 transgenic maize) by applying ligation detection reaction and universal array technology. J Agric Food Chem 52:1049–1054

    CAS  PubMed  Google Scholar 

  • Bradford KJ, Deynze AV, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–443

    CAS  PubMed  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    CAS  PubMed  Google Scholar 

  • Brown K (2001) Seeds of concern. Sci Am 284:52–57

    CAS  PubMed  Google Scholar 

  • Byrne P (2004) Labelling of genetically engineered foods: food and nutrition series. (http://www.ext.colostate.edu/pubs/foodnut/09371.html)

  • Carpenter JE, Gianessi LP (2001) Agricultural biotechnology: updated benefit estimates. National Center for Food and Agricultural Policy, Washington, DC

    Google Scholar 

  • CAST (Council for Agricultural Science and Technology) (2000) Ecological impact assessment. Science source for food, agricultural, and environmental issues. Ames, IA, USA: CAST (http://www.cast-science.org/pubs/cropregulation.pdf)

  • CAST (Council for Agricultural Science and Technology) (2001) Evaluation of the US Regulatory Process for Crop Developed Through Biotechnology. Issue Paper 19. Ames, IA, USA: CAST (http://www.cast-science.org/pubs/cropregulation.pdf)

  • Chamier B, Lorenz MG, Wackernagel W (1993) Natural transformation of Acinetobacter calcoaceticus by plasmid DNA adsorbed on sand and groundwater aquifer material. Appl Environ Microbiol 59:1662–1667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho MJ, Yano H, Okamoto D, Kim HK, Jung HR, Newcomb K, Le VK, Yoo HS, Langham, R, Buchanan BB, Lemaux PG (2004) Stable transformation of rice (Oryzae sativa L.) via microprojectile bombardment of highly regenerative, green tissues derived from mature seed. Plant Cell Rep 22:483–489

    CAS  PubMed  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degnan FH (1997) The food label and the right-to-know. Food Drug Law J 52:49–60

    CAS  PubMed  Google Scholar 

  • Ding J, Jai J, Yang L, Wen H, Zhang C, Liu W, Zhang D (2004) Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. J Agric Food Chem 53:3372–3377

    Google Scholar 

  • Doty SL, Shang TO, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordan MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci USA 97:6287–6291

    CAS  PubMed  Google Scholar 

  • Edge JM, Benedict JH, Carroll JP, Reding HK (2001) Bollgard Cotton: an assessment of global economic, environmental, and social benefits. J Cotton Sci 5:1–8

    Google Scholar 

  • Endo S, Kasahara T, Sugita K, Matsunaga E, Ebinuma H (2001) The isopentyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tobacum cv. Petite Havana SR1). Plant Cell Rep 20:60–66

    CAS  PubMed  Google Scholar 

  • Engel KH, Frenzl T, Miller A (2002) Current and future benefits from the use of GM technology in food production. Toxicol Lett 127:329–336

    CAS  PubMed  Google Scholar 

  • Ferber D (1999) GM crops in the cross hairs: Science 28:1662–1666

    Google Scholar 

  • Fisher R, Twyman RM, Schillberg S (2003) Production of antibodies in plants and their use for global health. Vaccine 21:820–825

    Google Scholar 

  • Fitter A, Perrins J, Williamson M (1990) Weed probability challenged. Biotechnology 8:473

    Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    CAS  PubMed  Google Scholar 

  • Fuchs RL, Astwood JD (1996) Allergenicity assessment of foods derived from genetically modified plants. Food Technol 50:83–88

    CAS  Google Scholar 

  • Garcia S, Ezcurra E, Schoel B, Acevedo F, Soberon J, Snow AA (2005) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico. Proc Natl Acad Sci USA 35:12338–12343

    Google Scholar 

  • Gelvin SB (2005) Gene exchange by design. Nature 433:583–584

    CAS  PubMed  Google Scholar 

  • Gilissen LJW, Metz PLJ, Stiekema WJ, Nap JP (1998) Biosafety of E. coli β-glucuronidase (GUS) in plants. Transgenic Res 7:157–163

    CAS  PubMed  Google Scholar 

  • Govil S (2004) Biotechnology for environmentally sustainable development. Adv Biotech 200:415–417

    Google Scholar 

  • Graff GD, Wright BD, Bennett AB, Zilberman D (2004) Access to intellectual property is a major obstacle to developing transgenic horticultural crops. Calif Agric 58:120–126

    Google Scholar 

  • Halpin C (2005) Genes stacking in transgeneic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    CAS  PubMed  Google Scholar 

  • Harper BK, Mabon SA, Leffel SM, Halfhill MD, Richards HA, Moyer KA, Stewart CN (1999) Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nat Biotechnol 17:1125–1129

    CAS  PubMed  Google Scholar 

  • Harrison LA, Bailey MR, Naylor MW, Ream JE, Hammond BG, Nida DL, Burnette BL, Nickson TE, Mitsky TA, Taylor TA, Fuchs RL, Padgette SR (1996) The expressed protein in glyphosate-tolerant soybean, 5-enolpyruvylshikinate-3-phosphase synthase from Agrobacterium sp. strain CP4 is rapidly digested in vitro and is not toxic to acutely gavaged mice. J Nutr 126:728–740

    CAS  PubMed  Google Scholar 

  • Heritage J (2004) The fate of transgenes in the human gut. Nat Biotechnol 22:170–172

    CAS  PubMed  Google Scholar 

  • Hernandez M, Duplan MN, Berthier G, Vaitilingom M, Hauser W, Freyer R, Pla M, Bertheau Y (2004) Development and comparison of four real-time polymerase chain reaction systems for specific detection and quantification of Zea mays L. J Agric Food Chem 52:4632–4637

    CAS  PubMed  Google Scholar 

  • Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillusthuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487

    Google Scholar 

  • Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684

    CAS  PubMed  Google Scholar 

  • ISB News Report (2001) Genetically modified crops and foods: a report of the AMA Council on scientific affairs. (http://www.isb.vt.edu/news/2001/Jan01.pdf)

  • Jaffe G (2005) Withering on the vine will agricultural Biotech’s promises bear fruit? (Center For Science in the Public interest. Washington, DC 2005). (http://cspinet.org/new/pdf/withering_on_the_vine.pdf)

  • Janmaat AF, Myers J (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc R Soc Lond B 270:2263–2270

    Google Scholar 

  • James JS (2004) Consumer knowledge and acceptance of agricultural biotechnology vary. Calif Agric 58:99–105

    Google Scholar 

  • Jennings JC, Albee LD, Kolwyck DC, Surber ML, Taylor ML, Hartnell GF, Lirette RP, Glenn KC (2003a) Attempts to detect transgenic and endogenous plant DNA and transgenic protein in muscle from broilers fed yieldgard corn borer corn. Poult Sci 82:371–380

    CAS  PubMed  Google Scholar 

  • Jennings JC, Kolwyck DC, Kays SB, Whetsell, AJ, Surber JB, Cromwell GL, Lirette RP, Glenn KC (2003b) Determining whether transgenic and endogenous plant DNA and transgenic protein are detectable in muscle from swine fed Roundup Ready soybean meal. J Anim Sci 81:1447–1455

    CAS  PubMed  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Peterson SG, Brunstedt J (1998) Analysis of mannose selection used for transformation of sugarbeet. Mol Breed 4:111–117

    CAS  Google Scholar 

  • Jones L (1999) Science, medicine and the future. Genetically modified foods. BMJ 318:581–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna M, Stotzky G (1992) Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microbiol 58:1930–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian A, Keese PK, Jefferson RA (1999) Microbial genes for secreted β-glucuronidases, gene products and uses thereof. WO1999/019217

  • Konig A, Cockburn A, Crevel RWR, Debruyne E, Grafstroem R, Hammerling U, Kimber I, Knudsen I, Kuiper HA, Peijnenburg AACM, Penninks AH, Poulsen M, Schauzu M, Wal JM (2004) Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem Toxicol 42:1047–1088

    CAS  PubMed  Google Scholar 

  • Koprek T, McElory D, Louwerse J, Carrier Williams R (1999) Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection. Plant J 19:719–726

    CAS  PubMed  Google Scholar 

  • Leffel SM, Mabon SA, Stewart CN Jr (1997) Application of green fluorescent protein in plants. Biotechniques 23:912–918

    CAS  PubMed  Google Scholar 

  • Lopez-Juez E, Jarvis RP, Takeuchi A, Page AM, Choury J (1998) New Arabidopsis cue mutants suggest a close connection between plastid and phytochrome-regulation of nuclear gene expression. Plant Physiol 118:803–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz MG, Wackernagel W (1987) Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl Environ Microbiol 53:2948–2952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunello P, Mansilla C, Conci V, Ponz F (2004) Ultra-sensitive detection of two garlic potyvirus using a real-time fluorescent (Taqman) RT-PCR assay. J Virol Methods 118:15–21

    CAS  PubMed  Google Scholar 

  • MacKenzie D (2000) International Comparison of Regulatory frameworks For Food Products of Biotechnology. Ottawa, Canada: Canadian Biotechnology Advisory Committee, p. 62 (http://www.cbaccccb.ca/documents/en/InternatComparisons_MacKenzie.pdf)

  • Mason HS, Warzecha H, Mor T, Arntzen CJ (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 8:324–329

    CAS  PubMed  Google Scholar 

  • Markoulatos P, Siagakas N, Moncany M (2002) Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 16:47–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    CAS  PubMed  Google Scholar 

  • Monciardini P, Podini D, Marmiroli N (1998) Exotic gene expression in transgenic plants as a tool for monitoring environmental pollution. Chemosphere 37:2761–2772

    CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Methods Enzymol 155:335–350

    CAS  PubMed  Google Scholar 

  • Naested H, Fennema M, Hao L, Andersen M, Janssen DB, Mundy J (1999) A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis. Plant J 18:571–576

    CAS  PubMed  Google Scholar 

  • Nap JP, Metz PLZ, Escaler M, Conner AJ (2003) The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. Plant J 33:1–18

    PubMed  Google Scholar 

  • Netherwood T, M Martín-Orúe S, G O’Donnell A, Gockling S, Graham J, Mathers JC, Gilbert HJ (2004) Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat Biotechnol 22:204–209

    CAS  PubMed  Google Scholar 

  • Nordlee JA, Taylor ST, Townsend JA, Thomas LA, Bush RK (1996) Identification of a Brazil-nut allergen in transgenic soybean. N Engl J Med 334:688–692

    CAS  PubMed  Google Scholar 

  • Ow DW (2001) The right chemistry for marker gene removal? Nat Biotechnol 19:115–116

    CAS  PubMed  Google Scholar 

  • Ow DW, Wood KV, DeLuca M, De Wet JR, Helilnsk, DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    CAS  PubMed  Google Scholar 

  • Pereira A (2000) A transgenic perspective on plant functional genomics. Transgenic Res 9:245–260

    CAS  PubMed  Google Scholar 

  • Perr HA (2002) Children and genetically engineered food: potentials and problems. J Pediatr Gastroenterol Nutr 35:475–486

    CAS  PubMed  Google Scholar 

  • Pew Initiative on food and Biotechnology (2004) Issues in the regulation of genetically engineered plants and animals. (Washington, DC 2004). (http://pewagbiotech.org/research/regulation/Regulation.pdf)

  • Randy V (2001) Plant biotechnology. Biotechnology information. Virginia cooperative extension. (http://www.ext.vt.edu/pubs/biotech/443-004/443-004.pdf)

  • Raybould AF, Gray AJ (1993) Genetically modified crops and hybridization with wild relatives: a UK perspective. J Appl Ecol 30:199–219

    Google Scholar 

  • Redenbaugh K, McHughen A (2004) Regulatory challenges reduce opportunities for horticultural biotechnology. Calif Agric 58:106–119

    Google Scholar 

  • Regal PJ (1994) Scientific principles for ecologically based risk assessment of transgenic organisms. Mol Ecol 3:5–13

    Google Scholar 

  • Rissler J, Mellon M (1993) Perils amidst the promise: ecological risks of transgenic crops in a global market. Union of Concerned Scientists, Cambridge, USA

    Google Scholar 

  • Romanowsky G, Lorenz MG, Wackernagel W (1993) Use of polymerase chain reaction and electorporation of Escherichia coli to monitor the persistence of extracellular plasmid DNA introduced into natural soils. Appl Environ Microbiol 59:3438–3446

    Google Scholar 

  • Rommens CM, Humara JM, Ye JS, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 35:421–431

    Google Scholar 

  • Rudi K, Rudi I, Holck A (2003) A novel multiplex quantitative DNA array based on PCR (MQDA-PCR) for quantification of transgenic maize in food and feed. Nucleic Acids Res 31:11–62

    Google Scholar 

  • Rugh CL (2004) Genetically engineered phytoremediation: one man’s trash is another man’s transgene. Trends Biotechnol 22:496–498

    CAS  PubMed  Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480

    CAS  PubMed  Google Scholar 

  • Schoenly KG, Cohen MB, Barrion AT, Zhang W, Gaolach B, Viajante VD (2003) Effects of Bacillus thuringiensis on non-target herbivore and natural enemy assemblages in tropical irrigated rice. Environ Biosafety Res 2:181–206

    PubMed  Google Scholar 

  • Stave JW (2002) Protein immunoassay methods for detection of biotech crops: applications, limitations, and practical considerations. J AOAC Int 85:780–786

    CAS  PubMed  Google Scholar 

  • Stewart CN Jr, Harold A, Richards IV, Matthew HD (2000) Transgenic plants and biosafety: science, misconceptions and public perceptions. Biotechniques 29:832–843

    CAS  PubMed  Google Scholar 

  • Stougaard J (1993) Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant J 3:755–761

    CAS  Google Scholar 

  • Stull D (2001) A feast of fluorescence. Scientist 15:20–21

    Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Google Scholar 

  • Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ballester V, Granero F, Mensua JL, Ferre J (1997) Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci USA 94:12780–12785

    CAS  PubMed  Google Scholar 

  • Trifa Y, Zhang D (2004) DNA content in embryo and endosperm of Maize kernel (Zea mays L): impact on GMO quantification. J Agric Food Chem 52:1044–1048

    CAS  PubMed  Google Scholar 

  • UK GM Science Review Panel (2003) GM Science Review. First Report. An open Review of the Science relevant to GM crops and food based on interests and concerns of the public (UK Government, London, 2003). (http://www.gmsciencedebate.org.uk/report/pdf/gmsci-report1-full.pdf)

  • Wilson FD, Flint HM, Deaton WR, Buehler RE (1994) Yield, yield components, and fiber properties of insect-resistant cotton lines containing a Bacillus thuringiensis toxin gene. Crop Sci 34:38–41

    Google Scholar 

  • Yan L, Kerr PS (2002) Genetically engineered crops: their potential use for improvement of human nutrition. Nutr Rev 60:135–141

    PubMed  Google Scholar 

Download references

Acknowledgements

Om V. Singh and Shivani Ghai have equally contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Jain.

Additional information

This is IMTECH Communication No. 038/2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, O.V., Ghai, S., Paul, D. et al. Genetically modified crops: success, safety assessment, and public concern. Appl Microbiol Biotechnol 71, 598–607 (2006). https://doi.org/10.1007/s00253-006-0449-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0449-8

Keywords

Navigation