Skip to main content
Log in

Screening for cystic fibrosis via a magnetic and microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes a microfluidic electrochemical immunoassay that features two strategies, viz. (a), the incorporation of magnetic nanoparticles (MNPs) into the central microfluidic channel and acting as a bioaffinity support for the immobilization of the antibody against the immunoreactive trypsin (anti-IRT), and (b), the electrodeposition of copper nanoparticles (CuNPs) on a gold electrode. IRT, a marker for cystic fibrosis, is extracted from blood samples onto a disk using ultrasonication, eluted, and then injected into the detection system where it is captured by anti-IRT-loaded nanoparticles (anti-IRT-Ab-MNPs). Bound IRT is electrochemically quantified after addition of HRP-labeled anti-IRT-Ab which, in the presence of H2O2, catalyzes the oxidation of catechol to form o-benzoquinone which is detected at a working potential of −150 mV (vs. Ag/AgCl). The electrochemical response to benzoquinone is proportional to the concentration of IRT in the range from 0 to 580 ng⋅mL−1. The coefficients of variation are <5 % for within-day assays, and <6.4 % for between-day assays. The method was compared to a commercial ELISA for IRT where is showed a correlation coefficient of close to 1. In our perception, this approach represents an attractive alternative to existing methods for screening newborns for cystic fibrosis.

Immunoreactive trypsin (IRT) extracted from blood samples was captured into the central microfluidic channel by anti-IRT-loaded magnetic nanoparticles. Bound IRT was electrochemically quantified after addition of HRP-labeled anti-IRT-Ab using a gold electrode modified with copper nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kerem B, Rommens J, Buchanan J, Markiewicz D, Cox T, Chakravarti A, et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  CAS  Google Scholar 

  2. Soave D, Miller M, Keenan K, Li W, Gong J, Ip W, et al (2014) Evidence for a causal relationship between early exocrine pancreatic disease and cystic fibrosis-related diabetes: a mendelian randomization study. Diabetes 63:2114–2119

    Article  CAS  Google Scholar 

  3. Minasian C, McCullagh A, Bush A (2005) Cystic fibrosis in neonates and infants. Early Hum Dev 81:997–1004

    Article  Google Scholar 

  4. Farrell PM (2008) Is newborn screening for cystic fibrosis a basic human right? J Cyst Fibros 7:262–265

    Article  Google Scholar 

  5. Castellani C, Southern KW, Brownlee K, Dankert Roelse J, Duff A, Farrell M, et al (2009) European best practice guidelines for cystic fibrosis neonatal screening. J Cyst Fibros 8:153–173

    Article  Google Scholar 

  6. Miller MR, Soave D, Li W, Gong J, Pace RG, Boëlle P, Cutting GR, Drumm ML, Knowles MR, Sun L, Rommens JM, Accurso F, Durie PR, Corvol H, Levy H, Sontag MK, Strug LJ (2015) Variants in solute carrier SLC26A9 modify prenatal exocrine pancreatic damage in cystic fibrosis. J Pediatr 166(5):1152–1157

    Article  CAS  Google Scholar 

  7. Therrell Jr BL, Hannon WH, Hoffman G, Ojodu J, Farrell PM (2012) Immunoreactive trypsinogen (IRT) as a biomarker for cystic fibrosis: challenges in newborn dried blood spot screening. Mol Genet Metab 106:1–6

    Article  CAS  Google Scholar 

  8. Sommerburg O, Krulisova V, Hammermann J, Lindner M, Stahl NM, Muckenthaler M, Kohlmueller D, Happich M, Kulozik AE, Votava F, Balascakova M, Skalicka V, Stopsack M, Gahr M, Macek Jr M, Mall MA, Hoffmann GF (2014) Comparison of different IRT–PAP protocols to screen newborns for cystic fibrosis in three central European populations. J Cyst Fibros 13:15–23

    Article  Google Scholar 

  9. DiBattista A, Macedo AN, Al-Dirbashi OY, Chakraborty P, Britz-McKibbin P (2014) Metabolomics for discovery of biomarkers for cystic fibrosis: towards MS-based primary screening methods with improved positive predictive value. Clin Biochem 47(15):143

    Article  Google Scholar 

  10. Kim NH, Jeong JS, Kwon HJ, Lee YM, Yoon HR, Lee KR, Hong SP (2010) Simultaneous diagnostic method for phenylketonuria and galactosemia from dried blood spots using high-performance liquid chromatography-pulsed amperometric detection. J Chromatogr B 878:1860–1864

    Article  CAS  Google Scholar 

  11. Mo X, Li Y, Tang A, Ren Y (2013) Simultaneous determination of phenylalanine and tyrosine in peripheral capillary blood by HPLC with ultraviolet detection. Clin Biochem 46:1074–1078

    Article  CAS  Google Scholar 

  12. Chuang W, Pacheco J, Zhang XK, Martin MM, Biski CK, Keutzer JM, Wenger DA, Caggana M, Orsini Jr JJ (2013) Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for krabbe disease. Clin Chim Acta 419:73–76

    Article  CAS  Google Scholar 

  13. Tang J, Tang DP, Su BL, Li QF, Qiu B, Chen GN (2011) Silver nanowire-graphene hybrid nanocomposites as label for sensitive electrochemical immunoassay of alpha-fetoprotein. Electrochim Acta 56:8168–8175

    Article  CAS  Google Scholar 

  14. Wang J (2002) Portable electrochemical systems. Trends Anal Chem 21:226–232

    Article  CAS  Google Scholar 

  15. Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20:2488–2503

    Article  CAS  Google Scholar 

  16. Pumera M, Merkoci A, Alegret S (2006) New materials for electrochemical sensing VII. Microfluidic chip platforms. Trends Anal Chem 25:219–235

    Article  CAS  Google Scholar 

  17. Tang J, Tang D (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles. Microchim Acta 182(13):2077–2089

    Article  CAS  Google Scholar 

  18. Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134:15607–15620

    Article  CAS  Google Scholar 

  19. Zhu Z, Shi L, Feng H, Zhou HS (2015) Single domain antibody coated gold nanoparticles as enhancer for Clostridium difficile toxin detection by electrochemical impedance immunosensors. Bioelectrochemistry 101:153–158

    Article  CAS  Google Scholar 

  20. Yang Z, Liu Y, Lei C, Sun X, Zhou Y, (2015) A flexible giant magnetoimpedance-based biosensor for the determination of the biomarker C-reactive protein Microchimica Acta doi:10.1007/s00604-015-1587-4

  21. Ding L, Bond AM, Zhai J, Zhang J (2013) Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal Chim Acta 797:1–12

    Article  CAS  Google Scholar 

  22. Pumera M, Escarpa A (2009) Nanomaterials as electrochemical detectors in microfluidics and CE: fundamentals, designs, and applications. Electrophoresis 30:3315–3323

    Article  CAS  Google Scholar 

  23. Zhao D, Xu BQ (2006) Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angew Chem Int Ed Engl 45:4955–4959

    Article  CAS  Google Scholar 

  24. Yang R, Qiu X, Zhang H, Li J, Zhu W, Wang Z, Huang X, Chen L (2005) Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 43:11–16

    Article  CAS  Google Scholar 

  25. Boo H, Park S, Ku B, Kim Y, Park JH, Kim HC, Chung TD (2004) Ionic strength-controlled virtual area of mesoporous platinum electrode. J Am Chem Soc 126:4524–4525

    Article  CAS  Google Scholar 

  26. Papadimitriou S, Tegou A, Pavlidou E, Kokkinidis G, Sotiropoulos S (2007) Methanol oxidation at platinised lead coatings prepared by a two-step electroless deposition-electrodeposition process on glassy carbon substrates. Electrochim Acta 52:6254–6260

    Article  CAS  Google Scholar 

  27. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal Chim Acta 594:24–31

    Article  CAS  Google Scholar 

  28. Jiang Y, Lu Y, Li F, Wu T, Niu L, Chen W (2012) Facile electrochemical codeposition of clean graphene–Pd nanocomposite as an anode catalyst for formic acid electrooxidation. Electrochem Commun 19:21–24

    Article  Google Scholar 

  29. Kun Z, Ling Z, Yi H, Ying C, Dongmei T, Shuliang Z, Yuyang Z (2012) Electrochemical behavior of folic acid in neutral solution on the modified glassy carbon electrode: platinum nanoparticles doped multi-walled carbon nanotubes with nafion as adhesive. J Electroanal Chem 677–680:105–112

    Article  Google Scholar 

  30. Nantaphol S, Chailapakul O, Siangproh W (2015) Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sensors Actuators B Chem 207:193–198

    Article  CAS  Google Scholar 

  31. Lin X, Ni Y, Kokot S (2013) Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal Chim Acta 765:54–62

    Article  CAS  Google Scholar 

  32. Goel S, Chen F, Cai W (2014) Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10:631–645

    Article  CAS  Google Scholar 

  33. Guo M, Wang P, Zhou C, Xia Y, Huang W, Li Z (2014) An ultrasensitive non-enzymatic amperometric glucose sensor based on a Cu-coated nanoporous gold film involving co-mediating. Sensors Actuators B Chem 203:388–395

    Article  CAS  Google Scholar 

  34. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  Google Scholar 

  35. Kumar SA, Cheng H-W, Chen S-M, Wang S-F (2010) Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing. Mater Sci Eng C 30:86–91

    Article  CAS  Google Scholar 

  36. Biomedicals MP (2011) ImmunoChem blood spot trypsin-MW ELISA kit, MP Biomedicals

  37. Segato TP, Coltro WK, Almeida AL, Piazetta MH, Gobbi AL, Mazo LH, Carrilho E (2010) A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates. Electrophoresis 31:2526–2533

    Article  CAS  Google Scholar 

  38. Fischer LM, Tenje M, Heiskanen AR, Masuda N, Castillo J, Bentien A, Émneus J, Jakobsen MH, Boisen A (2009) Gold cleaning methods for electrochemical detection applications. Microelectron Eng 86:1282–1285

    Article  CAS  Google Scholar 

  39. Seia MA, Stege PW, Pereira SV, De Vito IE, Raba J, Messina GA (2014) Silica nanoparticle-based microfluidic immunosensor with laser-induced fluorescence detection for the quantification of immunoreactive trypsin. Anal Biochem 463:31–37

    Article  CAS  Google Scholar 

  40. Liu GD, Yan JT, Shen GL, Yu RQ (2001) Renewable amperometric immunosensor for complement 3 (C3) assay in human serum. Sensors Actuators B Chem 80:95–100

    Article  CAS  Google Scholar 

  41. Xu YY, Pettersson K, Blomberg K, Hemmilä I, Mikola H, Lövgren T (1992) Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17 alpha-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots. Clin Chem 38:2038–2043

    CAS  Google Scholar 

  42. Lindau Shepard AB, Pass KA (2010) Newborn screening for cystic fibrosis by use of a multiplex immunoassay. Clin Chem 56:445–450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support from the Universidad Nacional de San Luis (UNSL), the Instituto de Química de San Luis (INQUISAL), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán A. Messina.

Electronic supplementary material

ESM 1

(DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benuzzi, M.L.S., Pereira, S.V., Raba, J. et al. Screening for cystic fibrosis via a magnetic and microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold electrode. Microchim Acta 183, 397–405 (2016). https://doi.org/10.1007/s00604-015-1660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1660-z

Keywords

Navigation