Skip to main content
Log in

Multiple enhancement of luminol electrochemiluminescence using electrodes functionalized with titania nanotubes and platinum black: ultrasensitive determination of hydrogen peroxide, resveratrol, and dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a substantial improvement of the electrochemiluminescence (ECL) of luminol which is widely used in flow injection analysis (FIA). It is based on synchronous dual sensitization of ECL by using titania nanotubes (TiNTs) and platinum black (PB). A piece of indium tin oxide (ITO) glass functionalized with TiNTs acts as the first working electrode, and a PB-modified platinum plate serves as the second one. By applying two constant potentials to the two electrodes, strong and consecutive ECL emission of luminol is obtained. The system works well in assays as shown for the successful quantitation of hydrogen peroxide (H2O2), of the antioxidant resveratrol, and of the neutrotransmitter dopamine (DA) in spiked human serum samples. The detection limits for these three species (at a signal-to-noise ratio of 3) are as low as 66 pM (H2O2), 22 nM (resveratrol), and 30 nM (DA). Recoveries in assays of DA in spiked serum range from 97.3 to 105.4 %. In our perception, the technique of dual sensitization represents a substantial improvement of the detection limits of ECL assays.

A substantial improvement of the electrochemiluminescence (ECL) of luminol was accomplished by synchronous dual sensitization of ECL with using titania nanotubes and platinum black.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miao WJ (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553

    Article  CAS  Google Scholar 

  2. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    Article  CAS  Google Scholar 

  3. Du SP, Guo ZY, Chen BB, Sha YH, Jiang XH, Li X, Gan N, Wang S (2014) Electrochemiluminescence immunosensor for tumor markers based on biological barcode mode with conductive nanospheres. Biosens Bioelectron 53:135–141

    Article  CAS  Google Scholar 

  4. Afsaneh S, Alireza B, Fatemeh S (2013) Synthesis of palladium nanoparticles on organically modified silica: application to design of a solid-state electrochemiluminescence sensor for highly sensitive determination of imipramine. Anal Chim Acta 796:115–121

    Article  CAS  Google Scholar 

  5. Muzyka K (2014) Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron 54:393–407

    Article  CAS  Google Scholar 

  6. Wu L, Wang JS, Yin ML, Ren JS, Miyoshi D, Sugimoto N, Qu XG (2014) Reduced graphene oxide upconversion nanoparticle hybrid for electrochemiluminescent sensing of a prognostic indicator in early-stage cancer. Small 10:330–336

    Article  CAS  Google Scholar 

  7. Xu SJ, Liu Y, Wang TH, Li JH (2010) Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes. Anal Chem 82:9566–9572

    Article  CAS  Google Scholar 

  8. Chen YY, Tu YF (2014) The enhanced electrochemiluminescence of luminol by resonance energy transfer with solid-phase CdTe quantum dots. Electrochim Acta 135:187–191

    Article  CAS  Google Scholar 

  9. Chen M, Wei XH, Tu YF (2011) A luminol-based micro-flow-injection electrochemiluminescent system to determine reactive oxygen species. Talanta 85:1304–1309

    Article  CAS  Google Scholar 

  10. Liu C, Wei XH, Tu YF (2013) Development of a reagentless electrochemiluminescent electrode for flow injection analysis using copolymerised luminol/aniline on nano-TiO2 functionalised indium-tin oxide glass. Talanta 111:156–162

    Article  CAS  Google Scholar 

  11. Wei XH, Liu C, Tu YF (2012) Microemulsion-enhanced electrochemiluminescence of luminol-H2O2 for sensitive flow injection analysis of antioxidant compounds. Talanta 94:289–294

    Article  CAS  Google Scholar 

  12. Yu ZM, Wei XH, Yan JL, Tu YF (2012) Intensification of electrochemiluminescence of luminol on TiO2 supported Au atomic cluster nano-hybrid modified electrode. Analyst 137:1922–1929

    Article  CAS  Google Scholar 

  13. Wei XH, Xiao CB, Wang K, Tu YF (2013) A nano-TiO2 supported AuAg alloy nanocluster functionalized electrode for sensitizing the electrochemiluminescent analysis. J Electroanal Chem 702:37–44

    Article  CAS  Google Scholar 

  14. Wang K, Wei XH, Tu YF (2014) Strong enhancement of the electrochemiluminescence of luminol by AuAg and PtAg alloy nanoclusters, and its sensitization by phenolic artificial oestrogens. Microchim Acta 181:1223–1230

    Article  CAS  Google Scholar 

  15. Hong J, Ming L, Tu YF (2014) Intensification of the electrochemiluminescence of luminol on hollow TiO2 nanoshell-modified indium tin oxide electrodes. Talanta 128:242–247

    Article  CAS  Google Scholar 

  16. Cui H, Zou GZ, Lin XQ (2003) Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal Chem 75:324–331

    Article  CAS  Google Scholar 

  17. Cui H, Xu Y, Zhang ZF (2004) Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal Chem 76:4002–4010

    Article  CAS  Google Scholar 

  18. Cui H, Zhang ZF, Zou GZ, Lin XQ (2004) Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. J Electroanal Chem 566:305–313

    Article  CAS  Google Scholar 

  19. Ming L, Peng TT, Tu YF (2014) A new strategy for exciting the electrochemiluminescence of luminol by double-static potential. Electrochem Commun 46:107–110

    Article  CAS  Google Scholar 

  20. Peng TT, Ming L, Tu YF (2015) A new designed cell for luminol based electrochemiluminescence by bi-potentiostatic excitation for flow-injection analysis. J Electroanal Chem 738:8–13

    Article  CAS  Google Scholar 

  21. Chu CC, Li M, Ge SG, Ge L, Yu JH, Yan M, Song XR, Li L, Han BH, Li JX (2013) “Sugarcoated haws on a stick”-like MWNTs-Fe3O4-C coaxial nanomaterial: synthesis, characterization and application in electrochemiluminescence immunoassays. Biosens Bioelectron 47:68–74

    Article  CAS  Google Scholar 

  22. Liu WY, Ma C, Yang HM, Zhang Y, Yan M, Ge SG, Yu JH, Song XR (2014) Electrochemiluminescence immunoassay using a paper electrode incorporating porous silver and modified with mesoporous silica nanoparticles functionalized with blue-luminescent carbon dots. Microchim Acta 181:1415–1422

    Article  CAS  Google Scholar 

  23. Zhong X, Chai YQ, Yuan R (2014) A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor. Talanta 128:9–14

    Article  CAS  Google Scholar 

  24. Deng WP, Chu CC, Ge SG, Yu JH, Yan M, Song XR (2015) Electrochemiluminescence PSA assay using an ITO electrode modified with gold and palladium, and flower-like titanium dioxide microparticles as ECL labels. Microchim Acta 182:1009–1016

    Article  CAS  Google Scholar 

  25. Grover IS, Singh S, Pal B (2013) The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes. Appl Surf Sci 280:366–372

    Article  CAS  Google Scholar 

  26. Kowalski D, Kim D, Schmuki P (2013) TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today 8:235–264

    Article  CAS  Google Scholar 

  27. Liu N, Chen XY, Zhang JL, Schwank JW (2014) A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal Today 225:34–51

    Article  CAS  Google Scholar 

  28. Lin YY, Dai H, Xu GF, Yang T, Yang CP, Tong YJ, Yang YS, Chen GN (2013) Enhanced luminol electrochemiluminescence triggered by an electrode functionalized with dendrimers modified with titanate nanotubes. Microchim Acta 180:563–572

    Article  CAS  Google Scholar 

  29. Dai H, Chi YW, Wu XP, Wang YM, Wei MD, Chen GN (2010) Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens Bioelectron 25:1414–1419

  30. Ming L, Xi X, Liu J (2006) Electrochemically platinized carbon paste enzyme electrodes: a new design of amperometric glucose biosensors. Biotechnol Lett 28:1341–1345

    Article  CAS  Google Scholar 

  31. Zhao JJ, Guo WY, Li JJ, Chu HH, Tu YF (2012) Study of the electrochemically generated chemiluminescence of reactive oxygen species on indium tin oxide glass. Electrochim Acta 61:118–123

    Article  CAS  Google Scholar 

  32. Chen XM, Lin ZJ, Cai ZM, Chen X, Oyama M, Wang XR (2009) Electrochemiluminescence of luminol on a platinum-nanoparticle-modified indium tin oxide electrode in neutral aqueous solution. J Nanosci Nanotechnol 9:2413–2420

    Article  CAS  Google Scholar 

  33. Chu HH, Guo WY, Di JW, Wu Y, Tu YF (2009) Study on sensitization from reactive oxygen species for electrochemiluminescence of luminol in neutral medium. Electroanalysis 21:1630–1635

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21175096, 21375091); The Project of Scientific and Technologic Infrastructure of Suzhou (SZS201207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Ming or Yifeng Tu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, L., Peng, T. & Tu, Y. Multiple enhancement of luminol electrochemiluminescence using electrodes functionalized with titania nanotubes and platinum black: ultrasensitive determination of hydrogen peroxide, resveratrol, and dopamine. Microchim Acta 183, 305–310 (2016). https://doi.org/10.1007/s00604-015-1614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1614-5

Keywords

Navigation