Skip to main content
Log in

Enhanced luminol electrochemiluminescence triggered by an electrode functionalized with dendrimers modified with titanate nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have constructed a novel electrochemiluminescence (ECL) platform by functionalizing a poly(amidoamine) dendrimer (PAAD) with titanate nanotubes (TiNTs). The PAAD has an open spherical structure that possesses a high density of active groups and thus favors mass transport, while the TiNTs possess excellent electronic conductivity and thus can promote electron transfer on the surface of a glassy carbon electrode (GCE). A study on the intensity and stability of the ECL of luminol on the modified GCE revealed a substantial improvement compared to that of a bare GCE. The effects of the concentration of TiNTs, the pH value of the solution, and of electrochemical parameters on the intensity of the ECL of luminol were studied and resulted in a sensitive ECL sensor for hydrogen peroxide (H2O2) that works in the concentration range of 1 nM to 0.9 μM. The scavenging effect of superoxide dismutase (SOD) on the H2O2 electrode ECL was then exploited to design a biosensor for the determination of SOD in concentrations between 50 and 500 nM.

The reaction mechanism schematic diagram of luminol ECL on the PAAD/TiNTs modified eledtrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen XM, Su BY, Song XH, Chen QA, Chen X, Wang XR (2011) Recent advances in electrochemiluminescent enzyme biosensors. Trends Anal Chem 30:665–676

    Article  CAS  Google Scholar 

  2. Roy P, Berger S, Schmuki P (2011) TiO nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  3. Devan RS, Patil RA, Lin JH, Ma YR (2012) One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater Online First. doi:10.1002/adfm.201201008

  4. Dai H, Xu HF, Chen GN (2010) Electrochemical behavior of thionine at titanate nanotubes-based modified electrode: A sensing platform for the detection of trichloroacetic acid. Talanta 81:1461–1466

    Article  CAS  Google Scholar 

  5. Lin LF, Huang XJ, Wang LS (2010) Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite. Solid State Sci 12:1764–1769

    Article  CAS  Google Scholar 

  6. Hosseini MG, Faraji M, Momeni MM (2011) Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid. Thin Solid Films 519:3457–3461

    Article  CAS  Google Scholar 

  7. Yu SJ, Peng X, Cao GZ, Zhou M, Qiao L, Yao JY, He HC (2012) Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochim Acta 76:512–517

    Article  CAS  Google Scholar 

  8. Han X, Zhu YH, Yang XL, Li CZ (2010) Electrocatalytic activity of Pt doped TiO2 nanotubes catalysts for glucose determination. J Alloys Compd 500:247–251

    Article  CAS  Google Scholar 

  9. Liu XQ, Feng HQ, Zhao RX, Wang YB, Liu XH (2012) A novel approach to construct a horseradish peroxidase|hydrophilic ionicliquids|Au nanoparticles dotted titanate nanotubes biosensor for amperometric sensing of hydrogen peroxide. Biosens Bioelectron 31:101–104

    Article  CAS  Google Scholar 

  10. Da H, Chi YW, Wu XP, Wang YM, Wei MD, Chen GN (2010) Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens Bioelectron 25:1414–1419

    Article  Google Scholar 

  11. Xu J, Yu JG, Zhou MH, Yu HG (2010) Fabrication of Ru (bpy)32 + -titanate nanotube nanocomposite and its application as sensitive solid-state electrochemiluminescence sensor material. J Phys Chem Solids 71:527–529

    Article  CAS  Google Scholar 

  12. Erica B, Ma GGT, Blanca RDS, Eusebio J, Thomas WC, Luis AG (2007) Glassy carbon electrodes modified with composites of starburst-PAAD dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine. Talanta 72(4):1586–1592

    Article  Google Scholar 

  13. Tang DP, Tang J, Su BL, Chen GN (2011) Gold nanoparticles-decorated amine-terminated poly (amidoamine) dendrimer for sensitive electrochemical immunoassay of brevetoxins in food samples. Biosens Bioelectron 26:2090–2096

    Article  CAS  Google Scholar 

  14. Quan L, Yang XR (2006) Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers. J Phys Chem B 110:16672–16678

    Article  Google Scholar 

  15. Zhang BL, Chen Q, Tang H, Xie QG, Ma M, Tan L, Zhang YY, Yao SZ (2010) Characterization of and biomolecule immobilization on the biocompatible multi-walled carbon nanotubes generated by functionalization with polyamidoamine dendrimers. Colloids Surf B: Biointerfaces 80:18–25

    Article  CAS  Google Scholar 

  16. Shen L, Hu N (2005) Electrostatic adsorption of heme proteins alternated with polyamidoamine dendrimers for layer-by-layer assembly of electroactive films. Biomacromolecules 6:1475–1483

    Article  CAS  Google Scholar 

  17. Zhang H, Hu N (2007) Conductive effect of gold nanoparticles encapsulated inside polyamidoamine (PAAD) dendrimers on electrochemistry of myoglobin (Mb) in {PAAD − Au/Mb}n Layer-by-Layer Films. J Phys Chem B 111:10583–10590

    Article  CAS  Google Scholar 

  18. Liu S, Lin Q, Liu S, Lin Q, Zhang XM, He XR, Xing XR, Lian WJ, Huang JD (2011) Electrochemical immunosensor for salbutamol detection based on CS-Fe3O4-PAAD-GNPs nanocomposites and HRP-MWCNTs-Ab bioconjugates for signal amplification. Sensors Actuators B 156:71–78

    Article  CAS  Google Scholar 

  19. An Y, Jiang X, Bi WJ, Chen H, Jin LT, Zhang SP, Wang CG, Zhang W (2012) Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAAD dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosens Bioelectron 32:224–230

    Article  CAS  Google Scholar 

  20. Venkatanarayanan A, Crowley K, Lestini E, Keyes TE, Rusling JF, Forstera RJ (2012) High sensitivity carbon nanotube based electrochemiluminescence sensor array. Biosens Bioelectron 31:233–239

    Article  CAS  Google Scholar 

  21. Chu HH, Yan JL, Tu YF (2011) Electrochemiluminescent detection of the hybridization of oligonucleotides using an electrode modified with nanocomposite of carbon nanotubes and gold nanoparticles. Microchim Acta 175:209–216

    Article  CAS  Google Scholar 

  22. Kuwana T, Epstein B, Seo ET (1963) Electrochemical generation of solution luminescence. J Phys Chem 67:2243–2244

    Article  CAS  Google Scholar 

  23. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  24. Anson F (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt (III)-(ethylenedinitrilo (tetraacetate) on mercury electrodes. Anal Chem 36:932–934

    Article  CAS  Google Scholar 

  25. Yin HS, Zhou YL, Ai SY, Chen QP, Zhu XB, Liu XG, Zhu LS (2010) Sensitivity and selectivity determination of BPA in real water samples using PAAD dendrimer and CoTe quantum dots modified glassy carbon electrode. J Hazard Mater 174:236–243

    Article  CAS  Google Scholar 

  26. Tian DY, Duan CF, Wang W, Li N, Zhang H, Cui H, Lu YY (2009) Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification. Talanta 78:399–404

    Article  CAS  Google Scholar 

  27. Schäferling M, Grögel DBM, Schreml S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174:1–18

    Article  Google Scholar 

  28. Li SF, Tao SJ, Wang FF, Hong JG, Wei XW (2010) Chemiluminescence reactions of luminol system catalyzed by nanoparticle s of a gold/silver alloy. Microchim Acta 169:73–78

    Article  CAS  Google Scholar 

  29. Tian Y, Shioda M, Kasahara S, Okajima T, Mao L, Hisabori T, Ohsaka T, Biophys B (2002) A facilitated electron transfer of copper-zinc superoxide dismutase (SOD) based on a cysteine-bridged SOD electrode. Biochim Biophys Acta 1569:151–158

    Article  CAS  Google Scholar 

  30. Wei W, Wang HJ, Jiang CQ (2008) Spectrofluorimetric determination of superoxide dismutase using a Europium-tetracycline probe. Spectrochim Acta Part A 70:389–393

    Article  Google Scholar 

  31. Yu FS, Chen F, Zheng SS, Chen LH (2008) Highly Sensitive Spectrofluorimetric Determination of Trace Amounts of Superoxide Dismutase Using a Prulifloxacin-Terbium(III) Probe. Anal Lett 41(13):2424–2436

    Article  CAS  Google Scholar 

  32. Girotti S, Fini F, Ferri E, Budini R, Piazzi S, Cantagalli D (2000) Determination of superoxide dismutase in erythrocytes by a chemiluminescent assay. Talanta 51:685–692

    Article  CAS  Google Scholar 

  33. Zhidkova TV, Proskurnina EV, Parfenov EA, Vladimirov YA (2011) Determination of superoxide dismutase and SOD-mimetic activities by a chemical system: Co2 /H2O2/lucigenin. Anal Bioanal Chem 401:381–386

    Article  CAS  Google Scholar 

  34. Chen J, Wollenberger U, Lisdat F, Scheller FW (2000) Superoxide sensor based on hemin modified electrode. Sensors Actuators B 70:115–120

    Article  CAS  Google Scholar 

  35. Gobi KV, Mizutani F (2001) Amperometric detection of superoxide dismutase at cytochrome c-immobilized electrodes: xanthine oxidase and ascorbate oxidase incorporated biopolymer membrane for in-vivo analysis. Anal Sci: Int J Jpn Soc Anal Chem 17:11–15

    Article  CAS  Google Scholar 

  36. Reddy KK, Gobi KV (2012) Activated direct electron transfer of nano Au bioconjugates of cytochrome c for electrocatalytic detection of trace levels of superoxide dismutase enzyme. Electrochim Acta 78:109–114

    Article  CAS  Google Scholar 

  37. Lin ZY, Huang LZ, Liu Y, Lin JM, Chi YW, Chen GN (2008) Electrochemiluminescent biosensor based on multi-wall carbon nanotube/nano-Au modified electrode. Electrochem Commun 10:1708–1711

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was financially supported by the National Nature Sciences Foundation of China (21205016, 21274022), the Program for Changjiang Scholars and Innovative Research Teams in University (No. IRT1116), the National Science Foundation of Fujian Province (2011 J05020), and the Education Department of Fujian Province (JA11062). Fujian Normal University Outstanding Young Teacher Research Fund Projects (fjsdjk2012068) were also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Dai or Guonan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Dai, H., Xu, G. et al. Enhanced luminol electrochemiluminescence triggered by an electrode functionalized with dendrimers modified with titanate nanotubes. Microchim Acta 180, 563–572 (2013). https://doi.org/10.1007/s00604-013-0963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0963-1

Keywords

Navigation