Skip to main content
Log in

Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes, and its application

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor has been constructed for the determination of adriamycin (ADM) that is based on a glassy carbon electrode modified with silver nanoparticles and multi-walled carbon nanotubes with carboxy groups. The modified electrode was characterized by scanning electron microscopy and exhibits a large enhancement of the differential pulse voltammetric response to ADM. Signals are linear with the concentrations of ADM in the range from 8.2 × 10−9 M to 19.0 × 10−9 M, with a detection limit of 1.7 × 10−9 M. The sensor is highly reproducible and exhibits excellent stability. It was to detect calf thymus DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghirmai S, Mume E, Tolmachev V, Sjobery S (2005) Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohydr Res 340:15

    Article  CAS  Google Scholar 

  2. Marco AD, Gaetani M, Orezzi P, Scarpinato BM, Silvertrini R, Soldati M, Dasdia T, Valentini L (1964) The anthracyclines are members of the rhodomycin group of antibiotics produced by streptomyces. Nature 201:706

    Article  Google Scholar 

  3. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 14-hydroxy daunomycin, a new antitumor antibiotic from streptomyces peucetius var.caesius. Biotechnol Bioeng 11:1101

    Article  CAS  Google Scholar 

  4. Berg H, Horn G, Luthardt U (1981) Interactions of anthracycline antibiotics with biopolymers: Part V. polarographic behaviour and complexes with DNA. Bioelectrochem Bioenerg 8:537

    Article  CAS  Google Scholar 

  5. Foster RT, Carr RA, Pasutto FM, Longstreth JA (1995) Stereospecific high-performance liquid chromatographic assay of lomefloxacin in human plasma. J Pharm Biomed Anal 13:1243

    Article  CAS  Google Scholar 

  6. Lou JS, Zhang JL, Zhang CL (1994) Clinical pharmacokinetics and bioavilabilty of lomefloxacin in chinese volunteers. Chin J Antibiotics 19:253

    CAS  Google Scholar 

  7. Nie LH, Zhao HC, Wang X, Yi L, Lu Y, Jin LP (2002) Determination of lomefloxacin by terbium sensitized chemiluminescence method. Anal Bioanal Chem 374:1187

    Article  CAS  Google Scholar 

  8. Liu J, Wang ZH, Luo GA (2002) The interaction of DNA with dopamine by spectroscopic and electrochemical methods. Anal Sci 7:751

    Article  Google Scholar 

  9. Zhang TL, Zhao HC, Jin LP (1999) Photochemical fluorescence enhancement of the terbium–lomefloxacin complex and its application. Talanta 49:77

    Article  CAS  Google Scholar 

  10. Ye BX, Yuan LJ, Chen C, Tao JC (2005) Electrochemical and spectroscopic study of the interaction of indirubin with DNA. Electroanalysis 17:1523

    Article  CAS  Google Scholar 

  11. Zhang YZ, Cai YJ, Su S, Ni YH (2006) Electrochemical studies of oxidation of lomefloxacin and interaction with calf thymus DNA at nano-snO2/DHP modified electrode. Electroanalysis 181:479

    Google Scholar 

  12. Zhang HM, Li NQ (2000) Electrochemical studies of the interaction of adriamycin to DNA. J Pharm Biomed Anal 22:67

    Article  CAS  Google Scholar 

  13. Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, Anmar MA, Khalid MA (2005) Electrochemical approach of anticancer drugs–DNA interaction. J Pharm Biomed Anal 37:205

    Article  CAS  Google Scholar 

  14. Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56

    Article  CAS  Google Scholar 

  15. Lordi V, Yao N, Wei J (2001) Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem Mater 13:733

    Article  CAS  Google Scholar 

  16. Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38:363

    Article  CAS  Google Scholar 

  17. Tu XM, Xie QJ, Huang Z, Jia X, Ye M (2008) Electrocatalytic oxidation and sensitive determination L-cysteine at a poly(aminoquinone)-carbon nanotubes of hybrid film modified glassy carbon electrode. Microchim Acta 162:219

    Article  CAS  Google Scholar 

  18. Wu FH, Zhao GC, Wei XW, Yang ZS (2004) Electrocatalysis of tryptophan at multi-Walled carbon nanotube modified electrode. Microchim Acta 144:243

    Article  CAS  Google Scholar 

  19. Sun YX, Fei JJ, Hou J, Zhang Q, Liu YL, Hu BN (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373

    Article  CAS  Google Scholar 

  20. Xu CL, Chen JF, Cui Y, Han QY, Choo H, Liaw PK, Wu DH (2006) Influence of the surface treatment on the deposition of platinum nanoparticles on the carbon nanotubes. Adv Eng Mater 8:73

    Article  CAS  Google Scholar 

  21. Li LH, Zhang WD (2008) Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163:305

    Article  CAS  Google Scholar 

  22. Ye JS, Bai YC, Zhang WD (2009) Modification of vertically aligned carbon nanotube arrays with palladium nanoparticles for electrocatalytic reduction of oxygen. Microchim Acta 165:361

    Article  CAS  Google Scholar 

  23. Chen JF, Xu CL, Mao ZQ, Chen GR, Wei BQ, Liang J, Wu DH (2002) Fabrication of Pt deposited on carbon nanotubes and performance of its polymer electrolyte membrane fuel cells. Sci Chin A 1:82

    Google Scholar 

  24. Chen GR, Xu CL, Mao ZQ, Li YB, Zhu J, Ci LJ, Wei BQ, Liang J, Wu DH (2000) Deposition of the platinum crystals on the carbon nanotubes. Chin Sci Bull 2:134

    Article  Google Scholar 

  25. Li CH, Yao KF, Ruan DB, Liang J, Xu CL, Wu DH (2003) Synthesis of carbon nanotubes with Ni/CNTs catalyst. Sci Chin E 3:303

    Article  Google Scholar 

  26. Xu SX, Li FY, Wei RZ (2005) Preparation of novel RuB amorphous alloy catalyst supported on carbon nanotubes. Carbon 43:861

    Article  CAS  Google Scholar 

  27. Gao GY, Guo DJ, Wang C, Li HL (2007) Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation. Electrochem Commun 9:1582

    Article  CAS  Google Scholar 

  28. Wang C, Wang GF, Fang B (2009) Electrocatalytic oxidation of bilirubin at ferrocenecarboxamide modified MWCNT–gold nanocomposite electrodes. Microchim Acta 164:113

    Article  CAS  Google Scholar 

  29. Barton JK, Goldberg JM, Kumar CV, Turro NJ (1986) Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectivity. J Am Chem Soc 108:2081

    Article  CAS  Google Scholar 

  30. Yang NJ, Wang XX, Wan QJ (2007) Silver nucleation on mercaptoacetic acid covered gold electrodes. Electrochim Acta 52:4818

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Nature Science Foundation of China (NSFC) (No. 20675002) and Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhong Zhang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Zhang, Y. Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes, and its application. Microchim Acta 169, 161–165 (2010). https://doi.org/10.1007/s00604-010-0331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0331-3

Keywords

Navigation