Skip to main content
Log in

Immunoassay for netrin 1 via a glassy carbon electrode modified with multi-walled carbon nanotubes, thionine and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a nanostructured immunosensor for the cardiovascular biomarker netrin 1. A glassy carbon electrode was consecutively modified with multi-walled carbon nanotubes (MWCNTs), nafion (to retain the MWCNTs), thionine-coated gold nanoparticles (Thi@AuNPs), and monoclonal antibodies against netrin 1. The modified electrode was characterized by transmission electron microscopy, cyclic voltammetry, differential pulse voltammetry, UV-visible spectrophotometry and X-ray diffraction. The presence of Thi@AuNPs warrants direct and convenient immobilization of the antibody. This immunoelectrode enables netrin 1 to be determined, best at a voltage of −300 mV (vs. SCE), with a limit of detection of 30 fg mL−1 (at an S/N ratio of 3) after a 50 min incubation time. The detection range extends from 0.09 to 1800 pg∙mL−1. The method is simple, sensitive, specific and reproducible. We presume this stable and reproducible biosensor to be useful for the early detection of cardiovascular diseases.

A high sensitivity immunoassay was developed for the detection of netrin 1 based on multi-walled carbon nanotubes, thionine and gold nanoparticles. Its excellent performance is ascribed to the good conductivity of MWCNTs and the combination of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meyerhardt JA, Caca K, Eckstrand BC, Hu G, Lengauer C, Banavali S, Look AT, Fearon ER (1999) Netrin-1: interaction with deleted in colorectal cancer (DCC) and alterations in brain tumors and neuroblastomas. Cell Growth Differ 10:35–42

    CAS  Google Scholar 

  2. Ramesh G, Berg A, Jayakumar C (2011) Plasma netrin-1 is a diagnostic biomarker of human cancers. Biomarkers 16:172–180

    Article  CAS  Google Scholar 

  3. Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ, Kuo CJ, Li DY (2004) The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci U S A 101:16210–16215

    Article  CAS  Google Scholar 

  4. Wang W, Reeves WB, Pays L, Mehlen P, Ramesh G (2009) Netrin-1 overexpression protects kidney from ischemia reperfusion injury by suppressing apoptosis. Am J Pathol 175:1010–1018

    Article  CAS  Google Scholar 

  5. Rajasekharan S, Baker KA, Horn KE, Jarjour AA, Antel JP, Kennedy TE (2009) Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA. Development 136:415–426

    Article  CAS  Google Scholar 

  6. Joseph BB, Quan PD (2013) The neuroimmune guidance cue netrin-1: a new therapeutic target in cardiovascular disease. Am J Cardiovasc Dis 3:129–134

    Google Scholar 

  7. Kefeli U, Yildirim ME, Aydin D, Madenci OC, Yasar N, Sener N, Mert AG, Yuksel S, Ercelep OB, Korkmaz T, Yildiz R, Gumus M (2012) Netrin-1 concentrations in patients with advanced gastric cancer and its relation with treatment. Biomarkers 17:663–667

    Article  CAS  Google Scholar 

  8. Ramesh G, Kwon O, Ahn K (2010) Netrin-1: a novel universal biomarker of human kidney injury. Transplant Proc 42:1519–1522

    Article  CAS  Google Scholar 

  9. Yang L, Zhao H, Fan S, Deng S, Lv Q, Lin J, Li CP (2014) Label-free electrochemical immunosensor based on gold-silicon carbide nanocomposites for sensitive detection of human chorionic gonadotrophin. Biosens Bioelectron 57:199–206

    Article  CAS  Google Scholar 

  10. Zhou J, Tang D, Hou L, Cui Y, Chen H, Chen G (2012) Nanoplatinum-enclosed gold nanocores as catalytically promoted nanolabels for sensitive electrochemical immunoassay. Anal Chim Acta 751:52–58

    Article  CAS  Google Scholar 

  11. Zhuo Y, Gui G, Chai Y, Liao N, Xiao K, Yuan R (2014) Sandwich-format electrochemiluminescence assays for tumor marker based on PAMAM dendrimer-L-cysteine-hollow gold nanosphere nanocomposites. Biosens Bioelectron 53:459–464

    Article  CAS  Google Scholar 

  12. Gan N, Jin H, Li T, Zheng L (2011) Fe(3)O(4)/Au magnetic nanoparticle amplification strategies for ultrasensitive electrochemical immunoassay of alfa-fetoprotein. Int J Nanomedicine 6:3259–3269

    Article  CAS  Google Scholar 

  13. Leng C, Wu J, Xu Q, Lai G, Ju H, Yan F (2011) A highly sensitive disposable immunosensor through direct electro-reduction of oxygen catalyzed by palladium nanoparticle decorated carbon nanotube label. Biosens Bioelectron 27:71–76

    Article  CAS  Google Scholar 

  14. Tu MC, Chang YT, Kang YT, Chang HY, Chang P, Yew TR (2012) A quantum dot-based optical immunosensor for human serum albumin detection. Biosens Bioelectron 34:286–290

    Article  CAS  Google Scholar 

  15. Jiang X, Chai Y, Yuan R, Cao Y, Chen Y, Wang H, Gan X (2013) An ultrasensitive luminol cathodic electrochemiluminescence immunosensor based on glucose oxidase and nanocomposites: graphene-carbon nanotubes and gold-platinum alloy. Anal Chim Acta 783:49–55

    Article  CAS  Google Scholar 

  16. Gao X, Zhang Y, Chen H, Chen Z, Lin X (2011) Amperometric immunosensor for carcinoembryonic antigen detection with carbon nanotube-based film decorated with gold nanoclusters. Anal Biochem 414:70–76

    Article  CAS  Google Scholar 

  17. Hu Y, Zhao Z, Wan Q (2011) Facile preparation of carbon nanotube-conducting polymer network for sensitive electrochemical immunoassay of Hepatitis B surface antigen in serum. Bioelectrochemistry 81:59–64

    Article  CAS  Google Scholar 

  18. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  19. Tang C, Zhou T, Yang J, Zhang Q, Chen F, Fu Q, Yang L (2011) Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf B: Biointerfaces 86:189–197

    Article  CAS  Google Scholar 

  20. Tsai YC, Li SC, Chen JM (2005) Cast thin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 21:3653–3658

    Article  CAS  Google Scholar 

  21. Cui HF, Zhang K, Zhang YF, Sun YL, Wang J, Zhang WD, Luong JH (2013) Immobilization of glucose oxidase into a nanoporous TiO(2) film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer. Biosens Bioelectron 46:113–118

    Article  CAS  Google Scholar 

  22. Ayyaru S, Dharmalingam S (2014) Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Anal Chim Acta 818:15–22

    Article  CAS  Google Scholar 

  23. Chen D, Wang Q, Jin J, Wu P, Wang H, Yu S, Zhang H, Cai C (2010) Low-potential detection of endogenous and physiological uric acid at uricase-thionine-single-walled carbon nanotube modified electrodes. Anal Chem 82:2448–2455

    Article  CAS  Google Scholar 

  24. Han J, Ma J, Ma Z (2013) One-step synthesis of graphene oxide-thionine-Au nanocomposites and its application for electrochemical immunosensing. Biosens Bioelectron 47:243–247

    Article  CAS  Google Scholar 

  25. Ou C, Yuan R, Chai Y, Tang M, Chai R, He X (2007) A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface. Anal Chim Acta 603:205–213

    Article  CAS  Google Scholar 

  26. Zhu C, Guo S, Dong S (2012) PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv Mater 24:2326–2331

    Article  CAS  Google Scholar 

  27. Satishkumar BC, Govindaraj A, Mofokeng J, Subbanna GN, Rao CNR (1996) Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J Phys B At Mol Opt Phys 29:4925–4934

    Article  CAS  Google Scholar 

  28. Truong PL, Ma X, Sim SJ (2014) Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes. Nanoscale 6:2307–2315

    Article  CAS  Google Scholar 

  29. Liu H, Gao J, Xue M, Zhu N, Zhang M, Cao T (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010

    Article  CAS  Google Scholar 

  30. Cho S, Lee JS, Jun J, Kim SG, Jang J (2014) Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection. Nanoscale 6:15181–15195

    Article  CAS  Google Scholar 

  31. Han H, Cai Y, Liang J, Sheng Z (2007) Interactions between water-soluble CdSe quantum dots and gold nanoparticles studied by UV-visible absorption spectroscopy. Anal Sci 23:651–654

    Article  CAS  Google Scholar 

  32. Luo YB, Yu QW, Yuan BF, Feng YQ (2012) Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes. Talanta 90:123–131

    Article  CAS  Google Scholar 

  33. Zheng W, Maye MM, Leibowitz FL, Zhong CJ (2000) Imparting biomimetic ion-gating recognition properties to electrodes with a hydrogen-bonding structured core-shell nanoparticle network. Anal Chem 72:2190–2199

    Article  CAS  Google Scholar 

  34. Lei H, Shen Y, Song L, Yang J, Chevallier OP, Haughey SA, Wang H, Sun Y, Elliott CT (2010) Hapten synthesis and antibody production for the development of a melamine immunoassay. Anal Chim Acta 665:84–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Nation Natural Science Foundation of China (81370403 and 21205146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yu.

Additional information

Wailan Xu and Junlin He contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., He, J., Gao, L. et al. Immunoassay for netrin 1 via a glassy carbon electrode modified with multi-walled carbon nanotubes, thionine and gold nanoparticles. Microchim Acta 182, 2115–2122 (2015). https://doi.org/10.1007/s00604-015-1551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1551-3

Keywords

Navigation