Skip to main content
Log in

Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe an aptasensor for the determination of dopamine in human serum and with ultrahigh sensitivity and selectivity. The sensor is based on a nanocomposite consisting of reduced graphene oxide (rGO) and the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The PEDOT/rGO interface was prepared by electrochemical polymerization of EDOT using graphene oxide as the dopant which is later electrochemically reduced to form rGO. Subsequent covalent modification of the high surface area composite with a selective aptamer enables highly sensitive and selective detection by differential pulse voltammetry. The calibration plot established at a working voltage of 160 mV displays a linear response in the 1 pM to 160 nM concentration range and an unprecedented detection limit of 78 fM. The sensor is fairly selective in not responding to common interferents, and is reusable after regeneration with a 7 M solution of urea. It was successfully applied to (spiked) serum samples and gave recoveries ranging from 98.3 to 100.7 %.

A highly sensitive and selective biosensor for dopamine was developed based on an aptamer-modifed conducting polymer (PEDOT) doped with reduced graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jose PA, Eisner GM, Felder RA (1998) Renal dopamine receptors in health and hypertension-effects of ouabain and certain endogenous ouabain-like factors in hypertension. Pharmacol Ther 80:149–182

    Article  CAS  Google Scholar 

  2. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Elecrochemical detection of dopamine in the presnce of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369

    Article  CAS  Google Scholar 

  3. Perry M, Li Q, Kennedy RT (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 653:1–22

    Article  CAS  Google Scholar 

  4. Noelker C, Hampel H, Dodel R (2011) Blood-based protein biomarkers for diagnosis and classification of neurodegenerative diseases: current progress and clinical potential. Mol Diagn Ther 15:83–102

    Article  CAS  Google Scholar 

  5. Päivi U, Ruut R, Kirsi H, Petteri P, Raimo AK, Risto K (2009) Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography-tandem mass spectrometry. Anal Chem 81:8417–8425

    Article  Google Scholar 

  6. Moghadam MR, Dadfarnia S, Shabani AMH, Shahbazikhah P (2011) Chemometric-assisted kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal Biochem 410:289–295

    Article  CAS  Google Scholar 

  7. Huang HM, Lin CH (2005) Methanol plug assisted sweeping-micellar electrokineric chrimatography for the determination of dopamine in urine by violet light emitting diode-induced fluorescence detection. J Chromatogr B 816:113–119

    Article  CAS  Google Scholar 

  8. Seçkin ZE, Volkan M (2005) Flow injection fluorescene determination of dopamine using a photoinduced electron transfer (PET) boronic acid derivative. Anal Chim Acta 547:104–108

    Article  Google Scholar 

  9. Kong B, Zhu AW, Luo YP, Tian Y, Yu YY, Shi GY (2011) Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew Chem 50:1877–1880

    Article  Google Scholar 

  10. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–43. doi:10.1007/s00604-014-1308-4

  11. Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    Article  CAS  Google Scholar 

  12. Li Y, Du J, Yang J, Liu D, Lu X (2012) Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode. Colloids Surf B: Biointerfaces 97:32–36

    Article  CAS  Google Scholar 

  13. Jia D, Dai JY, Yuan HY, Lei L, Xiao D (2011) Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. Talanta 85:2344–2351

    Article  CAS  Google Scholar 

  14. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  15. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential en-richment:RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  16. Hu XG, Mu L, Wen JP, Zhou QX (2012) Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon 50:2772–2781

    Article  CAS  Google Scholar 

  17. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    Article  CAS  Google Scholar 

  18. Song SP, Wang LH, Li J, Fan CH, Zhao JL (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117

    Article  CAS  Google Scholar 

  19. Zhou L, Li DJ, Gai L, Wang JP, Li YB (2012) Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensors Actuators B 162:201–208

    Article  CAS  Google Scholar 

  20. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  21. Liu Y, Matharu Z, Howland MC, Revzin A, Simonian AL (2012) Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing. Anal Bioanal Chem 404:1181–1196

    Article  CAS  Google Scholar 

  22. Zhou L, Wang M, Wang J, Ye Z (2011) Application of Biosensor Surface Immobilization Methods for Aptamer. Chin J Anal Chem 39:432–438

    Article  CAS  Google Scholar 

  23. He P, Shen L, Cao Y, Li D (2007) Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Anal Chem 79:8024–8029

    Article  CAS  Google Scholar 

  24. Huang YC, Ge B, Sen D, Yu HZ (2008) Immobilized DNA switches as electronic sensors for picomolar detection of plasma proteins. J Am Chem Soc 130:8023–8029

    Article  CAS  Google Scholar 

  25. Zheng Y, Wang Y, Yang X (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensors Actuators B 156:95–99

    Article  CAS  Google Scholar 

  26. Farjami E, Campos R, Nielsen JS, Gothelf KV, Kjems J, Ferapontova EE (2013) RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine. Anal Chem 85:121–128

    Article  CAS  Google Scholar 

  27. Liu S, Xing X, Yu J, Lian W, Li J, Cui M, Huang J (2012) A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination. Biosens Bioelectron 36:186–191

    Article  Google Scholar 

  28. Wang WT, Xu GY, Cui XT, Sheng G, Luo XL (2014) Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron 58:153–156

    Article  CAS  Google Scholar 

  29. Luo XL, Killard AJ, Smyth MR (2007) Nanocomposite and nanoporous polyaniline conducting polymers exhibit enhanced catalysis of nitrite reduction. Chem Eur J 13:2138–2143

    Article  CAS  Google Scholar 

  30. Bryan T, Luo XL, Forsgren L, Morozova-Roche LA, Davis JJ (2012) The robust electrochemical detection of a Parkinson’s disease marker in whole blood sera. Chem Sci 3:3468–3473

    Article  CAS  Google Scholar 

  31. Deng C, Chen J, Nie Z, Wang M, Chu X, Chen X, Xiao X, Lei C, Yao S (2009) Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Anal Chem 81:739–745

    Article  CAS  Google Scholar 

  32. Xu D, Yu X, Liu Z, He W, Ma Z (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77:5107–5113

    Article  CAS  Google Scholar 

  33. Xu MY, Luo XL, Davis JJ (2013) The label free picomolar detection of insulin in blood serum. Biosens Bioelectron 39:21–25

    Article  CAS  Google Scholar 

  34. Liu Y, Qu X, Guo H, Chen H, Liu B, Dong S (2006) Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens Bioelectron 21:2195–2201

    Article  CAS  Google Scholar 

  35. Inhwa J, Dmitriy AD, Richard DP, Rodney SR (2008) Tunable electrical conducitivity of individual graphene oxide at “low” temperatures. Nano Lett 8:4283–4287

    Article  Google Scholar 

  36. Mo JW, Ogorevc B (2001) Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal Chem 73:1196–1202

    Article  CAS  Google Scholar 

  37. Yu S, Luo C, Wang L, Peng H, Zhu Z (2013) Poly (3,4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Analyst 138:1149–1155

    Article  CAS  Google Scholar 

  38. Song MJ, Lee SK, Kim JH, Lim DS (2012) Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal Sci 28:583–587

    Article  CAS  Google Scholar 

  39. Jiang X, Lin X (2005) Immobilization of DNA on carbon fiber microelectrodes by using overoxidized polypyrrole template for selective detection of dopamine and epinephrine in the presence of high concentrations of ascorbic acid and uric acid. Analyst 130:391–396

    Article  CAS  Google Scholar 

  40. Zhuang Z, Li J, Xu R, Xiao D (2011) Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int J Electrochem Sci 6:2149–2161

    CAS  Google Scholar 

  41. Zeng Y, Zhou Y, Kong L, Zhou T, Shi G (2013) A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens Bioelectron 45:25–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 21275087, 21175077), the Natural Science Foundation of Shandong Province of China (ZR2012BM008), and the Taishan Scholar Program of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason J. Davis or Xiliang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, W., Davis, J.J. et al. Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchim Acta 182, 1123–1129 (2015). https://doi.org/10.1007/s00604-014-1418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1418-z

Keywords

Navigation