Skip to main content

Advertisement

Log in

Silica nanowires: Growth, integration, and sensing applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 129 refs.) gives an overview on how the integration of silica nanowires (NWs) into micro-scale devices has resulted, in recent years, in simple yet robust nano-instrumentation with improved performance in targeted application areas such as sensing. This has been achieved by the use of appropriate techniques such as di-electrophoresis and direct vapor-liquid-growth phenomena, to restrict the growth of NWs to site-specific locations. This also has eliminated the need for post-growth processing and enables nanostructures to be placed on pre-patterned substrates. Various kinds of NWs have been investigated to determine how their physical and chemical properties can be tuned for integration into sensing structures. NWs integrated onto interdigitated micro-electrodes have been applied to the determination of gases and biomarkers. The technique of directly growing NWs eliminates the need for their physical transfer and thus preserves their structure and performance, and further reduces the costs of fabrication. The biocompatibility of NWs also has been studied with respect to possible biological applications. This review addresses the challenges in growth and integration of NWs to understand related mechanism on biological contact or gas exposure and sensing performance for personalized health and environmental monitoring.

Silica nanowires decorated micro-electrodes for sensing application

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Lieber CM (2003) Nanoscale science and technology: building a big future from small things. MRS Bull 28(07):486–491

    CAS  Google Scholar 

  2. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    CAS  Google Scholar 

  3. Huang Y, Lieber CM (2004) Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure Appl Chem 76(12):2051–2068

    CAS  Google Scholar 

  4. Sahoo S, Parveen S, Panda J (2007) The present and future of nanotechnology in human health care. Nanomedicine Nanotechnol Biol Med 3(1):20–31

    CAS  Google Scholar 

  5. Altmann J (2004) Military uses of nanotechnology: perspectives and concerns. Secur Dialogue 35(1):61–79

    Google Scholar 

  6. Rickerby D, Morrison M (2007) Nanotechnology and the environment: A European perspective. Sci Technol Adv Mater 8(1):19–24

    CAS  Google Scholar 

  7. Nalwa HS (2001) Nanostructured materials and nanotechnology: concise edition. Gulf Professional Publishing

  8. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    CAS  Google Scholar 

  9. Patolsky F, Timko BP, Zheng G, Lieber CM (2007) Nanowire-based nanoelectronic devices in the life sciences. MRS Bull 32(02):142–149

    CAS  Google Scholar 

  10. Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358(1):37–54

    CAS  Google Scholar 

  11. Carrascosa LG, Moreno M, Álvarez M, Lechuga LM (2006) Nanomechanical biosensors: a new sensing tool. TrAC Trends Anal Chem 25(3):196–206

    CAS  Google Scholar 

  12. Vaseashta A, Dimova-Malinovska D (2005) Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mater 6(3):312–318

    CAS  Google Scholar 

  13. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One–dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    CAS  Google Scholar 

  14. Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633

    CAS  Google Scholar 

  15. Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8(4):20–28

    CAS  Google Scholar 

  16. Li Y, Qian F, Xiang J, Lieber CM (2006) Nanowire electronic and optoelectronic devices. Mater Today 9(10):18–27

    CAS  Google Scholar 

  17. Lieber CM, Wang ZL (2007) Functional nanowires. MRS Bull 32(2):99

    CAS  Google Scholar 

  18. Garnett EC, Yang P (2008) Silicon Nanowire Radial p-n Junction Solar Cells. J Am Chem Soc 130(29):9224–9225

    CAS  Google Scholar 

  19. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P (2007) Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129(23):7228–7229

    CAS  Google Scholar 

  20. Zhou H, Wong SS (2008) A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2(5):944–958

    CAS  Google Scholar 

  21. Savage N (2008) Silicon Nanowires Turn Heat to Electricity. http://spectrum.ieee.org/energy/renewables/silicon-nanowires-turn-heat-to-electricity Accessed 11 Jan 2008

  22. Cao A, Sudhölter EJ, de Smet LC (2013) Silicon Nanowire–Based Devices for Gas-Phase Sensing. Sensors 14(1):245–271

    Google Scholar 

  23. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471–1473

    CAS  Google Scholar 

  24. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2007) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Google Scholar 

  25. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167

    CAS  Google Scholar 

  26. Sadeghian RB, Islam MS (2011) Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications. Nat Mater 10(2):135–140

    CAS  Google Scholar 

  27. Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289(5479):606–608

    CAS  Google Scholar 

  28. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525–529

    CAS  Google Scholar 

  29. Sun Y, Gates B, Mayers B, Xia Y (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168

    CAS  Google Scholar 

  30. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95(25):257403

    Google Scholar 

  31. Sun L, Searson P, Chien C (2000) Finite-size effects in nickel nanowire arrays. Phys Rev B 61(10):R6463

    CAS  Google Scholar 

  32. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15(5):464–466

    CAS  Google Scholar 

  33. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H-J (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 12(5):323

    CAS  Google Scholar 

  34. Jiang X, Herricks T, Xia Y (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2(12):1333–1338

    CAS  Google Scholar 

  35. Hernandez-Ramirez F, Prades JD, Hackner A, Fischer T, Mueller G, Mathur S, Morante JR (2011) Miniaturized ionization gas sensors from single metal oxide nanowires. Nanoscale 3(2):630–634

    CAS  Google Scholar 

  36. Yoo J-K, Kim J, Jung YS, Kang K (2012) Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage. Adv Mater 24(40):5452–5456

    Google Scholar 

  37. Qu Y, Liao L, Li Y, Zhang H, Huang Y, Duan X (2009) Electrically conductive and optically active porous silicon nanowires. Nano Lett 9(12):4539–4543

    CAS  Google Scholar 

  38. Nelson SM, Mahmoud T, Beaux M, Shapiro P, McIlroy DN, Stenkamp DL (2010) Toxic and teratogenic silica nanowires in developing vertebrate embryos. Nanomedicine Nanotechnol Biol Med 6(1):93–102

    CAS  Google Scholar 

  39. Piao Y, Burns A, Kim J, Wiesner U, Hyeon T (2008) Designed Fabrication of Silica–Based Nanostructured Particle Systems for Nanomedicine Applications. Adv Funct Mater 18(23):3745–3758

    CAS  Google Scholar 

  40. Lopez PJ, Gautier C, Livage J, Coradin T (2005) Mimicking biogenic silica nanostructures formation. Curr Nanosci 1(1):73–83

    CAS  Google Scholar 

  41. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44(10):893–902

    CAS  Google Scholar 

  42. Crow JM (2008) Guessing nature’s silica secrets, http://www.rsc.org/chemistryworld/News/2008/April/15040801.asp. Royal Society of Chemistry Accessed April 2008

  43. Sun L, He H, Liu C, Ye Z (2011) Self-catalysis induced three-dimensional SiOx nanostructures. CrystEngComm 13(19):5807–5812

    CAS  Google Scholar 

  44. Liang Y, Xue B, Yumeng Y, Eryong N, Donglai L, Congli S, Huanhuan F, Jingjing X, Yu C, Yong J, Zhifeng J, Xiaosong S (2011) Preparation of silica nanowires using porous silicon as Si source. Appl Surf Sci 258(4):1470–1473

    Google Scholar 

  45. Hewett J (2004) Low-loss nanowires create a wealth of applications, http://nanotechweb.org/cws/article/indepth/19168. Accessed 9 March 2004

  46. Pan ZW, Dai ZR, Ma C, Wang ZL (2002) Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J Am Chem Soc 124(8):1817–1822

    CAS  Google Scholar 

  47. Gu Z, Liu F, Howe JY, Parans Paranthaman M, Pan Z (2009) Germanium-catalyzed hierarchical Al2O3 and SiO2 nanowire bunch arrays. Nanoscale 1(3):347

    CAS  Google Scholar 

  48. Zhang H-F, Wang C-M, Wang L-S (2002) Helical crystalline SiC/SiO2 core-shell nanowires. Nano Lett 2(9):941–944

    CAS  Google Scholar 

  49. Li Y, Ye C, Fang X, Yang L, Xiao Y, Zhang L (2005) Fabrication and photoluminescence of SiO2-sheathed semiconducting nanowires: the case of ZnS/SiO2. Nanotechnology 16(4):501

    CAS  Google Scholar 

  50. Pan Z, Dai Z, Xu L, Lee S, Wang Z (2001) Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B 105(13):2507–2514

    CAS  Google Scholar 

  51. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13(1):9–24

    Google Scholar 

  52. Pan Z, Dai S, Beach DB, Lowndes DH (2003) Temperature dependence of morphologies of aligned silicon oxide nanowire assemblies catalyzed by molten gallium. Nano Lett 3(9):1279–1284

    CAS  Google Scholar 

  53. Morales AM, Lieber CM (1998) A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 279(5348):208–211

    CAS  Google Scholar 

  54. Kovtyukhova NI, Mallouk TE, Mayer TS (2003) Templated Surface Sol–Gel Synthesis of SiO2 Nanotubes and SiO2–Insulated Metal Nanowires. Adv Mater 15(10):780–785

    CAS  Google Scholar 

  55. Huang SY, Ostrikov K, Xu S (2008) Plasma-enabled growth of ultralong straight, helical, and branched silica photonic nanowires. J Appl Phys 104(3):033301

    Google Scholar 

  56. Ren X, Lun Z (2012) Mesoporous silica nanowires synthesized by electrodeposition in AAO. Mater Lett 68:228–229

    CAS  Google Scholar 

  57. Sood DK, Sekhar PK, Bhansali S (2006) Ion implantation based selective synthesis of silica nanowires on silicon wafers. Appl Phys Lett 88(14):143110

    Google Scholar 

  58. Alabi TR, Yuan D, Bucknall D, Das S (2013) Silicon Oxide Nanowires: Facile and Controlled Large Area Fabrication of Vertically Oriented Silicon Oxide Nanowires for Photoluminescence and Sensor Applications. ACS Appl Mater Interfaces 5(18):8932–8938

    CAS  Google Scholar 

  59. Gruber S, Taylor RNK, Scheel H, Greil P, Zollfrank C (2011) Cellulose-biotemplated silica nanowires coated with a dense gold nanoparticle layer. Mater Chem Phys 129(1–2):19–22

    CAS  Google Scholar 

  60. Lin LW, Tang YH, Li XX, Pei LZ, Zhang Y, Guo C (2007) Water-assisted synthesis of silicon oxide nanowires under supercritically hydrothermal conditions. J Appl Phys 101(1):014314

    Google Scholar 

  61. Pei L (2009) Silicon oxide nanowires and spheres grown by hydrothermal deposition. Mater Sci-Pol 27(1)

  62. Agarwal V, Chen C-L, Dokmeci MR, Sonkusale S A (2008) CMOS integrated thermal sensor based on Single-Walled Carbon Nanotubes. In: Sensors, IEEE, 2008. IEEE, pp 748–751

  63. Zhang K, Yang Y, Pun EYB, Shen R (2010) Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate. Nanotechnology 21(23):235602

    Google Scholar 

  64. de Vasconcelos EA, dos Santos FRP, da Silva Jr EF, Boudinov H (2006) Nanowire growth on Si wafers by oxygen implantation and annealing. Appl Surf Sci 252(15):5572–5574

    Google Scholar 

  65. Hu JQ, Jiang Y, Meng XM, Lee CS, Lee ST (2003) A simple large-scale synthesis of very long aligned silica nanowires. Chem Phys Lett 367(3–4):339–343

    CAS  Google Scholar 

  66. Peng XS, Wang XF, Zhang J, Wang YW, Sun SH, Meng GW, Zhang LD (2002) Blue-light emission from amorphous SiOx nanoropes. Appl Phys A 74(6):831–833

    CAS  Google Scholar 

  67. Meng GW, Peng XS, Wang YW, Wang CZ, Wang XF, Zhang LD (2003) Synthesis and photoluminescence of aligned SiOx nanowire arrays. Appl Phys A 76(1):119–121

    CAS  Google Scholar 

  68. Wang ZL, Gao RP, Gole JL, Stout JD (2000) Silica Nanotubes and Nanofiber Arrays. Adv Mater 12(24):1938–1940

    CAS  Google Scholar 

  69. Yang Y, Meng G, Liu X, Zhu X, Kong M, Han F, Zhao X, Xu Q, Zhang L (2008) Synthesis and Photoluminescence of Si-Related Nanowires Using Porous Silicon as Si Element Source. Cryst Growth Des 8(6):1818–1822

    CAS  Google Scholar 

  70. Sekhar PK, Ramgir NS, Joshi RK, Bhansali S (2008) Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10. Nanotechnology 19(24):245502

    Google Scholar 

  71. Hsu J-H, Huang M-H, Lin H-H, Lin H-N (2006) Selective growth of silica nanowires on nickel nanostructures created by atomic force microscopy nanomachining. Nanotechnology 17(1):170–173

    CAS  Google Scholar 

  72. Praveen Kumar Sekhar SNS, Dinesh K Sood and Shekhar Bhansali (2006) Selective growth of silica nanowires in silicon catalysed by Pt thin film Nanotechnology 17 (18)

  73. Kim HWS, S. H. Lee, J. W. Lee, C. Hwang, H. J. Chung, S.-Y. Kim, H.-S. Hwang, S. K. Yeom, G. Y. Lee, N.-E. (2007) Synthesis, Structural Characterization, and Photoluminescence Properties of SiO~x Nanowires Prepared Using a Palladium Catalyst. JOURNAL- KOREAN PHYSICAL SOCIETY 50 (6)

  74. Yao Y, Fan S (2007) Si nanowires synthesized with Cu catalyst. Mater Lett 61(1):177–181

    CAS  Google Scholar 

  75. Choi C-S, Yoon J-H (2012) Synthesis of silica nanowires by PECVD at low temperature using Zn as a catalyst. Appl Phys A 108(3):509–513

    CAS  Google Scholar 

  76. Park BT, Yong K (2004) Controlled growth of core–shell Si–SiOx and amorphous SiO2 nanowires directly from NiO/Si. Nanotechnology 15(6):S365–S370

    CAS  Google Scholar 

  77. Shimpi P, Gao P-X (2010) Carbon-assisted lateral self-assembly of amorphous silica nanowires. CrystEngComm 12(10):2817–2820

    Google Scholar 

  78. Huey E, Krishnan S, Arya SK, Dey A, Bhansali S (2012) Optimized growth and integration of silica nanowires into interdigitated microelectrode structures for biosensing. Sensors Actuators B Chem 175:29–33

    CAS  Google Scholar 

  79. Bettge M, MacLaren S, Burdin S, Haasch RT, Abraham D, Petrov I, Yu M-F, Sammann E (2012) Ion-induced surface relaxation: controlled bending and alignment of nanowire arrays. Nanotechnology 23(17):175302

    Google Scholar 

  80. Park S, Heo J, Kim HJ (2011) A Novel Route to the Synthesis of Silica Nanowires without a Metal Catalyst at Room Temperature by Chemical Vapor Deposition. Nano Lett 11(2):740–745

    CAS  Google Scholar 

  81. Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core-shell Ag@ SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525

    CAS  Google Scholar 

  82. Yin Y, Lu Y, Sun Y, Xia Y (2002) Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2(4):427–430

    CAS  Google Scholar 

  83. Sioss JA, Stoermer RL, Sha MY, Keating CD (2007) Silica-coated, Au/Ag striped nanowires for bioanalysis. Langmuir 23(22):11334–11341

    CAS  Google Scholar 

  84. Wang L, Zhang X, Fu Y, Li B, Liu Y (2009) Bioinspired preparation of ultrathin SiO2 shell on ZnO nanowire array for ultraviolet-durable superhydrophobicity. Langmuir 25(23):13619–13624

    CAS  Google Scholar 

  85. Hsia C-H, Yen M-Y, Lin C-C, Chiu H-T, Lee C-Y (2003) In situ generation of the silica shell layer-Key factor to the simple high yield synthesis of silver nanowires. J Am Chem Soc 125(33):9940–9941

    CAS  Google Scholar 

  86. Wu J-M (2008) Sn-Doped Starfish-like Nanostructures from TiO2− SiO2 Core − Shell Nanocables and SiO2 Nanowires: Processing, Properties, and Characterization. J Phys Chem C 112(34):13192–13199

    CAS  Google Scholar 

  87. Wang Y, Tang Z, Liang X, Liz-Marzán LM, Kotov NA (2004) SiO2-coated CdTe nanowires: bristled nano centipedes. Nano Lett 4(2):225–231

    CAS  Google Scholar 

  88. Dai G, Yang S, Yan M, Wan Q, Zhang Q, Pan A, Zou B (2010) Simple Synthesis and Growth Mechanism of Core/Shell CdSe/SiOx Nanowires. J Nanomater 2010:1–6

    Google Scholar 

  89. Ruffino F, Grimaldi MG (2013) Au nanoparticles decorated SiO2 nanowires by dewetting on curved surfaces: facile synthesis and nanoparticles–nanowires sizes correlation. J Nanoparticle Res 15(9)

  90. Qu Y, Porter R, Shan F, Carter JD, Guo T (2006) Synthesis of tubular gold and silver nanoshells using silica nanowire core templates. Langmuir 22(14):6367–6374

    CAS  Google Scholar 

  91. Chueh YL, Chou LJ, Wang ZL (2006) SiO2/Ta2O5 core–shell nanowires and nanotubes. Angew Chem Int Ed 45(46):7773–7778

    CAS  Google Scholar 

  92. Chen C-L, Agarwal V, Sonkusale S, Dokmeci MR (2009) The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications. Nanotechnology 20(22):225302

    Google Scholar 

  93. Hochbaum AI, Fan R, He R, Yang P (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5(3):457–460

    CAS  Google Scholar 

  94. Liu D, Shi T, Tang Z, Zhang L, Xi S, Li X, Lai W (2011) Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays. Nanotechnology 22(46):465601

    Google Scholar 

  95. Heath JR (2008) Superlattice Nanowire Pattern Transfer (SNAP). Acc Chem Res 41(12):1609–1617

    CAS  Google Scholar 

  96. Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Ultrahigh-density nanowire lattices and circuits. Science 300(5616):112–115

    CAS  Google Scholar 

  97. McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6(5):379–384

    CAS  Google Scholar 

  98. McAlpine MC, Friedman RS, Lieber CM (2005) High-Performance Nanowire Electronics and Photonics and Nanoscale Patterning on Flexible Plastic Substrates. Proc IEEE 93(7):1357–1363

    CAS  Google Scholar 

  99. Lee K-H, Yang HS, Baik KH, Bang J, Vanfleet RR, Sigmund W (2004) Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films. Chem Phys Lett 383(3–4):380–384

    CAS  Google Scholar 

  100. Lee K-N, Jung S-W, Kim W-H, Lee M-H, Shin K-S, Seong W-K (2007) Well controlled assembly of silicon nanowires by nanowire transfer method. Nanotechnology 18(44):445302

    Google Scholar 

  101. Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. Eng Med Biol Mag 22(6):33–42

    Google Scholar 

  102. Lucci M, Regoliosi P, Reale A, Di Carlo A, Orlanducci S, Tamburri E, Terranova ML, Lugli P, Di Natale C, D’Amico A, Paolesse R (2005) Gas sensing using single wall carbon nanotubes ordered with dielectrophoresis. Sensors Actuators B Chem 111–112:181–186

    Google Scholar 

  103. MacNaughton S, Sonkusale S, Surwade S, Ammu S, Manohar S (2010) Carbon nanotube and graphene based gas micro-sensors fabricated by dielectrophoresis on silicon. In: Sensors, 2010 IEEE, 1–4 Nov. 2010 . pp 894–897

  104. Pohl HA, Hawk I (1966) Separation of living and dead cells by dielectrophoresis. Science 152(3722):647–649

    CAS  Google Scholar 

  105. Murphy-Pérez E, Arya SK, Bhansali S (2011) Vapor–liquid–solid grown silica nanowire based electrochemical glucose biosensor. Analyst 136(8):1686

    Google Scholar 

  106. Conley JF, Stecker L, Ono Y (2005) Directed integration of ZnO nanobridge devices on a Si substrate. Appl Phys Lett 87(22):223114

    Google Scholar 

  107. John F, Conley J, Stecker L, Ono Y (2005) Directed integration of ZnO nanobridge devices on a Si substrate. Appl Phys Lett 87(22):223114

    Google Scholar 

  108. Islam MS, Sharma S, Kamins TI, Williams RS (2004) Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces. Nanotechnology 15(5):L5–L8

    CAS  Google Scholar 

  109. Hochbaum AI, Yang P (2009) Semiconductor nanowires for energy conversion. Chem Rev 110(1):527–546

    Google Scholar 

  110. Alexander Jr F, Price DT, Bhansali S (2010) Optimization of interdigitated electrode (IDE) arrays for impedance based evaluation of Hs 578T cancer cells. In: Journal of Physics: Conference Series, . vol 1. IOP Publishing, p 012134

  111. Alexander FA Jr, Huey EG, Price DT, Bhansali S (2012) Real-time impedance analysis of silica nanowire toxicity on epithelial breast cancer cells. Analyst 137(24):5823

    CAS  Google Scholar 

  112. Wu Y, Su B, Jiang L (2012) Smartly Aligning Nanowires by a Stretching Strategy and Their Application As Encoded Sensors. ACS Nano 6(10):9005–9012

    CAS  Google Scholar 

  113. Tong L, Lou J, Gattass RR, He S, Chen X, Liu L, Mazur E (2005) Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett 5(2):259–262

    CAS  Google Scholar 

  114. Mohebbi M (2012) Optical sensing of nanoparticles in the infrared by use of silica nanowires. Opt Quant Electron 45(1):21–33

    Google Scholar 

  115. Wang S-B, Huang Y-F, Chattopadhyay S, Jinn Chang S, Chen R-S, Chong C-W, Hu M-S, Chen L-C, Chen K-H (2013) Surface plasmon-enhanced gas sensing in single gold-peapodded silica nanowires. NPG Asia Mater 5(5):e49

    CAS  Google Scholar 

  116. Tao C, Li X, Yang J, Shi Y (2011) Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane. Sensors Actuators B Chem 156(2):553–558

    CAS  Google Scholar 

  117. Paska Y, Haick H (2012) Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors. ACS Appl Mater Interfaces 4(5):2604–2617

    CAS  Google Scholar 

  118. Kwon NH, Beaux MF, Ebert C, Wang L, Lassiter BE, Park YH, McIlroy DN, Hovde CJ, Bohach GA (2007) Nanowire-Based Delivery of Escherichia coli O157 Shiga Toxin 1 A Subunit into Human and Bovine Cells. Nano Lett 7(9):2718–2723

    CAS  Google Scholar 

  119. Santra S, Yang H, Dutta D, Stanley JT, Holloway PH, Tan W, Moudgil BM, Mericle RA (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun 24:2810–2811

    Google Scholar 

  120. Kumar MNVR, Sameti M, Mohapatra SS, Kong X, Lockey RF, Bakowsky U, Lindenblatt G, Schmidt CH, Lehr CM (2004) Cationic Silica Nanoparticles as Gene Carriers: Synthesis, Characterization and Transfection Efficiency In vivo and In vitro. J Nanosci Nanotechnol 4(7):876–881

    CAS  Google Scholar 

  121. Min J, Baeumner AJ (2004) Characterization and Optimization of Interdigitated Ultramicroelectrode Arrays as Electrochemical Biosensor Transducers. Electroanalysis 16(9):724–729

    CAS  Google Scholar 

  122. Wang J (2006) Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892

    CAS  Google Scholar 

  123. Ramgir NS, Zajac A, Sekhar PK, Lee L, Zhukov TA, Bhansali S (2007) Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica nanowires. J Phys Chem C 111(37):13981–13987

    CAS  Google Scholar 

  124. Sekhar PK, Ramgir NS, Bhansali S (2008) Metal-decorated silica nanowires: an active surface-enhanced Raman substrate for cancer biomarker detection. J Phys Chem C 112(6):1729–1734

    CAS  Google Scholar 

  125. Arya SK, Chornokur G, Venugopal M, Bhansali S (2010) Antibody functionalized interdigitated [small mu]-electrode (ID [small mu] E) based impedimetric cortisol biosensor. Analyst 135(8):1941–1946

    CAS  Google Scholar 

  126. Rao A, Bankar A, Shinde A, Kumar AR, Gosavi S, Zinjarde S (2012) Phyto-inspired Silica Nanowires: Characterization and Application in Lipase Immobilization. ACS Appl Mater Interfaces 4(2):871–877

    CAS  Google Scholar 

  127. Zhang L, Geng WC, Qiao SZ, Zheng HJ, Lu GQ, Yan ZF (2010) Fabrication and Biosensing with CNT/Aligned Mesostructured Silica Core − Shell Nanowires. ACS Appl Mater Interfaces 2(10):2767–2772

    CAS  Google Scholar 

  128. Dean SL, Stapleton JJ, Keating CD (2010) Organically Modified Silicas on Metal Nanowires. Langmuir 26(18):14861–14870

    CAS  Google Scholar 

  129. Hu M-S, Chen H-L, Shen C-H, Hong L-S, Huang B-R, Chen K-H, Chen L-C (2006) Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat Mater 5(2):102–106

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF) ASSIST Nanosystems ERC (EEC-1160483) and National Institute of Health (NIH) 1RO1-DA027049. The author Rajesh Kumar acknowledges the University Grant Commission (UGC), India for the award of Raman Fellowship (ID 1,001, 2013–14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet Kaushik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, A., Kumar, R., Huey, E. et al. Silica nanowires: Growth, integration, and sensing applications. Microchim Acta 181, 1759–1780 (2014). https://doi.org/10.1007/s00604-014-1255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1255-0

Keywords

Navigation