Skip to main content
Log in

Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Conjugated polymer nanoparticles (CPNs) were developed based on a polyfluorene-based conjugated polymer with thiophene units carrying pyridyl moieties incorporated in the backbone of polymer chains (PFPyT). Hybrid CPNs fabricated from PFPyT and an amphiphilic polymer (NP1) displayed pH-sensitive fluorescence emission features in the range from pH 4.8 to 13, which makes them an attractive nanomaterial for wide range optical sensing of pH values. The fluorescence of hybrid CPNs based on chemically close polyfluorene derivatives without pyridyl moieties (NP3), in contrast, remains virtually unperturbed by pH values in the same range. The fluorescence emission features of NP1 underwent fully reversible changes upon alternating acidification/basification of aqueous dispersions of the CPNs and also displayed excellent repeatability. The observed pH sensing properties of NP1 are attributed to protonation/deprotonation of the nitrogen atoms of the pyridine moieties. This, in turn, leads to the redistribution of electron density of pyridine moieties and their participation in the π-conjugation within the polymer main chains. The optically transparent amphiphilic polymers also exerted significant influence on the pH sensing features of the CPNs, likely by acting as proton sponge and/or acid chaperone.

pH-sensitive fluorescent nanoparticles were fabricated from pyridine-functionalized conjugated polymer; protonation/deprotonation of the nitrogen atoms of pyridine moieties upon pH changes, which leads to the redistribution of electron density of pyridine moieties and their participation in the π-conjugation with polymer chains, were confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    CAS  Google Scholar 

  2. Young BP, Shin JJH, Orij R, Chao JT, Li SC, Guan XL, Khong A, Jan E, Wenk MR, Prinz WA, Smits GJ, Loewen CJR (2010) Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329:1085–1088

    Article  CAS  Google Scholar 

  3. Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171

    Article  CAS  Google Scholar 

  4. Fog A, Buck RP (1984) Electronic semiconducting oxides as pH sensors. Sensors Actuators 5:137–146

    Article  CAS  Google Scholar 

  5. Swindlehurst BR, Narayanaswamy R (2004) Optical sensing of pH in low ionic strength waters. In: Narayanaswamy R, Wolfbeis OS (ed) Optical sensors industrial environmental and diagnostic applications. Springer-Verlag, Berlin Heidelberg 12, pp 281–308

  6. Johnson I, Spencer MTZ (2010) The molecular probes handbook, 11th edn. Life Technologies, California

    Google Scholar 

  7. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Berlin

    Book  Google Scholar 

  8. Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343

    Article  CAS  Google Scholar 

  9. Miesenböck G, Angelis DAD, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  Google Scholar 

  10. Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2010) Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat Mater 9:676–684

    Article  CAS  Google Scholar 

  11. Wang XD, Stolwijk JA, Lang T, Sperber M, Meier RJ, Wegener J, Wolfbeis OS (2012) Ultra-Small, highly stable and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J Am Chem Soc 134:17011–17014

    Article  CAS  Google Scholar 

  12. Han JY, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728

    Article  CAS  Google Scholar 

  13. Smith AM, Duan HW, Mohs AM, Nie SM (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  CAS  Google Scholar 

  14. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  Google Scholar 

  15. Albertazzi L, Storti B, Marchetti L, Beltram F (2010) Delivery and subcellular targeting of dendrimer-based fluorescent pH sensors in living cells. J Am Chem Soc 132:18158–18167

    Article  CAS  Google Scholar 

  16. Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  CAS  Google Scholar 

  17. Kim HN, Guo ZQ, Zhu WH, Yoon J, Tian H (2011) Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 40:79–93

    Article  CAS  Google Scholar 

  18. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  Google Scholar 

  19. Feng XL, Liu LB, Wang S, Zhu DB (2010) Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem Soc Rev 39:2411–2419

    Article  CAS  Google Scholar 

  20. Tian ZY, Yu JB, Wu CF, Szymanski C, McNeill J (2010) Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Nanoscale 2:1999–2011

    Article  CAS  Google Scholar 

  21. Wu CF, Chiu DT (2013) Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52:3086–3109

    Article  CAS  Google Scholar 

  22. Chan YH, Wu CF, Ye FM, Jin YH, Smith PB, Chiu DT (2011) Development of ultrabright semiconducting polymer dots for ratiometric pH sensing. Anal Chem 83:1448–1455

    Article  CAS  Google Scholar 

  23. Zhang Y, Hörnfeldt AB, Gronowitz S (1995) Pyridine-substituted hydroxythiophenes. IV. Preparation of 3- and 4-(2-, 3- and 4- Pyridyl)-2-hydroxythiophenes. J Heterocycl Chem 32:435–444

    Article  CAS  Google Scholar 

  24. Lu G, Usta H, Risko C, Wang L, Facchetti A, Ratner MA, Marks TJ (2008) Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. Experiment and theory. J Am Chem Soc 130:7670–7685

    Article  CAS  Google Scholar 

  25. Liu H, Hao X, Duan CH, Yang H, Lv Y, Xu HJ, Wang HD, Huang F, Xiao DB, Tian ZY (2013) Al3+-induced far-red fluorescence enhancement of conjugated polymer nanoparticles and its application in live cell imaging. Nanoscale 5:9340–9347

    Article  CAS  Google Scholar 

  26. Yang H, Duan CH, Wu YS, Lv Y, Liu H, Lv YL, Xiao DB, Huang F, Fu HB, Tian ZY (2013) Conjugated polymer nanoparticles with Ag+-sensitive fluorescence emission: a new insight into the cooperative recognition mechanism. Part Part Syst Charact 30:972–980

    Article  CAS  Google Scholar 

  27. Huynh HV, He XM, Baumgartner T (2013) Halo chromic generation of white light emission using a single dithienophosphole luminophore. Chem Commun 49:4899–4901

    Article  CAS  Google Scholar 

  28. Stolar M, Baumgartner T (2012) Synthesis and unexpected halochromism of carbazole-functionalized dithienophospholes. New J Chem 36:1153–1160

    Article  CAS  Google Scholar 

  29. Romero-Nieto C, Durben S, Kormos IM, Baumgartner T (2009) Simple and efficient generation of white light emission from organophosphorus building blocks. Adv Funct Mater 19:3625–3631

    Article  CAS  Google Scholar 

  30. Zalar P, Henson ZB, Welch GC, Bazan GC, Nguyen TQ (2012) Color tuning in polymer light-emitting diodes with lewis acids. Angew Chem Int Ed 124:7613–7616

    Article  Google Scholar 

  31. Zhang X, Rehm S, Safont-Sempere MM, Würthner F (2009) Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nat Chem 1:623–629

    Article  CAS  Google Scholar 

  32. Peng HS, Stolwijk JA, Sun LN, Wegener J, Wolfbeis OS (2010) A nanogel for ratiometric fluorescent sensing of intracellular pH values. Angew Chem Int Ed 49:4246–4249

    Article  CAS  Google Scholar 

  33. Yang ZY, Qin W, Lam JWY, Chen SJ, Sung HHY, Williams ID, Tang BZ (2013) Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics. Chem Sci 4:3725–3730

    Article  CAS  Google Scholar 

  34. Wen QS, Liu LB, Yang Q, Lv FT, Wang S (2013) Dopamine-modified cationic conjugated polymer as a new platform for pH sensing and autophagy imaging. Adv Funct Mater 23:764–769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 21173262, 21373218) and the “Hundred-Talent Program” of CAS to Z. Tian.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianshan Li, Yishi Wu or Zhiyuan Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, H., Chen, Y., Li, L. et al. Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity. Microchim Acta 181, 1529–1539 (2014). https://doi.org/10.1007/s00604-014-1219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1219-4

Keywords

Navigation