Skip to main content
Log in

Determination of superoxide dismutase and SOD-mimetic activities by a chemical system: Co2/H2O2/lucigenin

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The bright chemiluminescence has been observed in the system: Co2+/hydrogen peroxide/lucigenin. The chemiluminescence intensity was directly proportional to either cobalt, hydrogen peroxide, or lucigenin concentrations. A procedure of determination of superoxide dismutase (SOD) activity by the chemiluminescence method in the cobalt–hydrogen peroxide–lucigenin system at pH 8.5 is suggested. A linear dependence was established between a relative chemiluminescence intensity and SOD concentration in the range of SOD concentrations between 0 and 4.5 nM, c 1/2 = 0.8 nM. The determination of SOD activity was performed in several tissue samples (rat plasma, erythrocyte hemolysate, and liver mitochondria). A technique of tissue sample preparation with the use of thermal inactivation of interfering proteins at 60 °C was used. The method was successfully applied for comparison of the efficiency of SOD mimetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    CAS  Google Scholar 

  2. Yao D, Vlessidis AG, Gou Y, Zhou X, Zhou Y, Evmiridis NP (2004) Chemiluminescence detection of superoxide anion release and superoxide dismutase activity: modulation effect of Pulsatilla chinensis. Anal Bioanal Chem 379(1):171–177. doi:10.1007/s00216-004-2527-z

    Article  CAS  Google Scholar 

  3. Laihia JK, Jansen CT, Ahotupa M (1993) Lucigenin and linoleate enhanced chemiluminescent assay for superoxide dismutase activity. Free Radic Biol Med 14(5):457–461

    Article  CAS  Google Scholar 

  4. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287. doi:0003-2697(71)90370-8

    Article  CAS  Google Scholar 

  5. Ewing JF, Janero DR (1995) Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232(2):243–248. doi:10.1006/abio.1995.0014

    Article  CAS  Google Scholar 

  6. Popov IN, Lewin G, von Baehr R (1987) Photochemiluminescent detection of antiradical activity. I. Assay of superoxide dismutase. Biomed Biochim Acta 46(11):775–779

    CAS  Google Scholar 

  7. Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247(21):6960–6962

    CAS  Google Scholar 

  8. Jewett SL, Rocklin AM (1993) Variation of one unit of activity with oxidation rate of organic substrate in indirect superoxide dismutase assays. Anal Biochem 212(2):555–559. doi:10.1006/abio.1993.1368

    Article  CAS  Google Scholar 

  9. Lissi E, Pascual C, Castillo MD (1994) On the use of the quenching of luminol luminescence to evaluate SOD activity. Free Radic Biol Med 16(6):833–837

    Article  CAS  Google Scholar 

  10. Okado-Matsumoto A, Fridovich I (2001) Assay of superoxide dismutase: cautions relevant to the use of cytochrome c, a sulfonated tetrazolium, and cyanide. Anal Biochem 298(2):337–342

    Article  CAS  Google Scholar 

  11. Nishikimi M, Appaji NR, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–853

    Article  CAS  Google Scholar 

  12. Lenaerts I, Braeckman BP, Matthijssens F, Vanfleteren JR (2002) A high-throughput microtiter plate assay for superoxide dismutase based on lucigenin chemiluminescence. Anal Biochem 311(1):90–92

    Article  CAS  Google Scholar 

  13. Lvovich V, Scheeline A (1997) Amperometric sensors for simultaneous superoxide and hydrogen peroxide detection. Anal Chem 69:454–462

    Article  CAS  Google Scholar 

  14. Mesaros S, Vankova Z, Grunfeld S, Mesarosova A, Malinski T (1998) Preparation and optimization of superoxide microbiosensor. Anal Chim Acta 358:27–33

    Article  CAS  Google Scholar 

  15. Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293(1–2):157–166

    Article  CAS  Google Scholar 

  16. Naoghare PK, Kwon HT, Song JM (2009) Development of a photosensitive, high-throughput chip-based superoxide dismutase (SOD) assay to explore the radioprotective activity of herbal plants. Biosens Bioelectron 24(12):3587–3593

    Article  CAS  Google Scholar 

  17. Simonian MA, Nalbandian RM (1975) Preparation of electrophoretically homogeneous erythrocuprein and its thermodenaturation. Biokhimiia 40(4):726–732

    CAS  Google Scholar 

  18. Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA (1998) Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 273(4):2015–2023

    Article  CAS  Google Scholar 

  19. Greenlee L, Fridovich I, Handler P (1962) Chemiluminescence induced by operation of iron-flavoproteins. Biochemistry 1:779–783

    Article  CAS  Google Scholar 

  20. Burdo TG, Seitz WR (1975) Mechanism of cobalt catalysis of luminol chemiluminescence. Anal Chem 47(9):1639–1643. doi:10.1021/ac60359a019

    Article  CAS  Google Scholar 

  21. Yamashiro N, Uchida S, Satoh Y, Morishima Y, Yokoyama H, Satoh T, Sugama J, Yamada R (2004) Determination of hydrogen peroxide in water by chemiluminescence detection, (I) flow injection type hydrogen peroxide detection system. J Nucl Sci Technol 41(9):890–897

    Article  CAS  Google Scholar 

  22. Lucas M, Solano F (1992) Coelenterazine is a superoxide anion-sensitive chemiluminescent probe: its usefulness in the assay of respiratory burst in neutrophils. Anal Biochem 206(2):273–277. doi:0003-2697(92)90366-F

    Article  CAS  Google Scholar 

  23. Nakano M (1998) Detection of active oxygen species in biological systems. Cell Mol Neurobiol 18(6):565–579

    Article  CAS  Google Scholar 

  24. Afanas’ev IB, Ostrachovitch EA, Korkina LG (1999) Lucigenin is a mediator of cytochrome C reduction but not of superoxide production. Arch Biochem Biophys 366(2):267–274. doi:10.1006/abbi.1999.1215

    Article  Google Scholar 

  25. Liochev SI, Fridovich I (1998) Lucigenin as mediator of superoxide production: revisited. Free Radic Biol Med 25(8):926–928. doi:S089158499800121X

    Article  CAS  Google Scholar 

  26. Liochev SI, Fridovich I (1997) Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Arch Biochem Biophys 337(1):115–120. doi:10.1006/abbi.1997.9766

    Article  CAS  Google Scholar 

  27. Maral J, Puget K, Michelson AM (1977) Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun 77(4):1525–1535. doi:S0006-291X(77)80151-4

    Article  CAS  Google Scholar 

  28. Peeters-Joris C, Vandevoorde AM, Baudhuin P (1975) Subcellular localization of superoxide dismutase in rat liver. Biochem J 150(1):31–39

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Zhidkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhidkova, T.V., Proskurnina, E.V., Parfenov, E.A. et al. Determination of superoxide dismutase and SOD-mimetic activities by a chemical system: Co2/H2O2/lucigenin. Anal Bioanal Chem 401, 381–386 (2011). https://doi.org/10.1007/s00216-011-5070-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5070-8

Keywords

Navigation