Skip to main content

Advertisement

Log in

Sensitive detection of tuberculosis using nanoparticle-enhanced surface plasmon resonance

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We show that the antigen CFP-10 (found in tissue fluids of tuberculosis patients) can be used as a marker protein in a surface-plasmon resonance (SPR) based method for early and simplified diagnosis of tuberculosis. A sandwich SPR immunosensor was constructed by immobilizing the CFP-10 antibody on a self-assembled monolayer on a gold surface, this followed by blocking it with bovine serum albumin. Following exposure of the sensor surface to a sample containing CFP-10, secondary antibody immobilized on nickel oxide nanoparticles are injected which causes a large SPR signal change. The method has a dynamic range from 0.1 to around 150 ng per mL of CFP-10, and a detection limit as low as 0.1 ng per mL. This is assumed to be due to the high amplification power of the NiO nanoparticles.

Schematic diagram of sensor chip configuration (left) and SPR study based on amplification strategy with NiO nanoparticles (right).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Global burden of tuberculosis. J Am Med Assoc 282:677–686

    Article  CAS  Google Scholar 

  2. Kumar A, Toledo JC, Patel RP, Lancaster JR, Steyn AJC (2007) Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci 104:11568–11573

    Article  CAS  Google Scholar 

  3. WHO (2010) Global tuberculosis control: a short update to the 2009 report. World Health Organization, Geneva

    Google Scholar 

  4. Cho SN (2007) Current issues on molecular and immunological diagnosis of tuberculosis. Yonsei Med J 48:347–359

    Article  CAS  Google Scholar 

  5. Marais BJ, Pai M (2007) Recent advances in the diagnosis of childhood tuberculosis. Arch Dis Child 92:446–452

    Article  Google Scholar 

  6. Wang L, Turner MO, Elwood RK, Schulzer M, Fitzgerald JM (2002) A meta-analysis of the effect of Bacille Calmette Guérin vaccination on tuberculin skin test measurements. Thorax 57:804–809

    Article  CAS  Google Scholar 

  7. Monkongdee P, McCarthy KD, Cain KP, Tasaneeyapan T, Nquyen HD, Nquyen TN, Nquyen TB, Teeratakulpisarn N, Udomsantisuk N, Heilig C, Varma JK (2009) Yield of acid-fast smear and mycobacterial culture for tuberculosis diagnosis in People with human immunodeficiency virus. Am J Respir Crit Care Med 180:903–908

    Article  Google Scholar 

  8. Whiteman M, Espinoza L, Post MJ, Bell MD, Falcone S (1995) Central nervous system tuberculosis in HIV-infected patients: clinical and radiographic findings. Am J Neuroradiol 16:1319–1327

    CAS  Google Scholar 

  9. Bai Y, Xue Y, Gao H, Wang L, Ding T, Bai W, Fan A, Zhang J, An Q, Xu Z (2008) Expression and purification of Mycobacterium tuberculosis ESAT-6 and MPT64 fusion protein and its immunoprophylactic potential in mouse model. Protein Expr Purif 59:189–196

    Article  CAS  Google Scholar 

  10. Hong SC, Lee J, Shin HC, Kim CM, Park JY, Koh K, Kim HJ, Chang CL, Lee J (2011) Clinical immunosensing of tuberculosis CFP-10 in patient urine by surface plasmon resonance spectroscopy. Sens Actuators B 160:1434–1438

    Article  CAS  Google Scholar 

  11. Díaz-González M, González-García MB, Costa-García A (2005) Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosens Bioelectron 20:2035–2043

    Article  Google Scholar 

  12. Chen HX, Lee J, Jo WS, Jeong MH, Koh K (2011) Development of surface plasmon resonance immunosensor for the novel protein immunostimulating factor. Microchim Acta 172:171–176

    Article  CAS  Google Scholar 

  13. Gorodkiewicz E, Ostrowska H, Sankiewicz A (2011) SRP imaging biosensor for the 20S proteasome: sensor development and application to measurement of proteasomes in human blood plasma. Microchim Acta 175:177–184

    Article  CAS  Google Scholar 

  14. Friggeri A, Veggel FCJMV, Reinhoudt DN (1999) Recognition of steroids by self-assembled monolayers of calix[4]arene-resorcin[4]arene receptors. Chem Eur J 5:3595–3602

    Article  CAS  Google Scholar 

  15. Nabok AV, Hassan AK, Ray AK (2000) Condensation of organic vapours within nanoporous calixarene thin films. J Mater Chem 10:189–194

    Article  CAS  Google Scholar 

  16. Gestwicki JE, Hsieh HV, Pitner JB (2001) Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance. Anal Chem 73:5732–5737

    Article  CAS  Google Scholar 

  17. Kwon MJ, Lee J, Wark AW, Lee HJ (2012) Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes. Anal Chem 84:1702–1707

    Article  CAS  Google Scholar 

  18. Lee Y, Lee EK, Cho YW, Matsui T, Kang IC, Kim TS, Han MH (2003) ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein-protein interaction studies. Proteomics 3:2289–2304

    Article  CAS  Google Scholar 

  19. Sasakura Y, Kanda K, Yoshimura-Suzuki T, Matsui T, Fukuzono S, Han MH, Shimizu T (2004) Protein microarray system for detecting protein-protein interactions using an anti-His-tag antibody and fluorescence scanning: effects of the heme redox state on protein-protein interactions of heme-regulated phosphodiesterase from Escherichia coli. Anal Chem 76:6521–6527

    Article  CAS  Google Scholar 

  20. Shin AR, Shin SJ, Lee KS, Eom SH, Lee SS, Lee BS, Lee JS, Cho SN, Kim HJ (2008) Improved sensitivity of diagnosis of tuberculosis in patients in Korea via a cocktail enzyme-linked immunosorbent assay containing the abundantly expressed antigens of the K strain of Mycobacterium tuberculosis. Clin Vaccine Immunol 15:1788–1795

    Article  CAS  Google Scholar 

  21. Harboe M, Oettinger T, Wiker HG, Rosenkrands I, Andersen P (1996) Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosisand virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG. Infect Immun 64:16–22

    CAS  Google Scholar 

  22. Hong SC, Chen HX, Lee J, Park HK, Kim YS, Shin HC, Kim CM, Park TJ, Lee SJ, Koh K, Kim HJ, Chang CL, Lee J (2011) Ultrasensitive immunosensing of tuberculosis CFP-10 based on SPR spectroscopy. Sens Actuators B 156:271–275

    Article  Google Scholar 

  23. Fan Q, Zhao J, Li H, Zhu L, Li G (2012) Exonuclease III-based and gold nanoparticle-assisted DNA detection with dual signal amplification. Biosens Bioelectron 33:211–215

    Article  CAS  Google Scholar 

  24. Wang J, Meng W, Zheng X, Liu S, Li G (2009) Combination of aptamer with gold nanoparticles for electrochemical signal amplification: application to sensitive detection of platelet-derived growth factor. Biosens Bioelectron 24:1598–1602

    Article  CAS  Google Scholar 

  25. Mei QH, Ding XR, Chen YY, Hong J, Koh K, Lee J, Chen HX, Yin YM (2012) Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins. Microchim Acta 178:301–307

    Article  CAS  Google Scholar 

  26. Niu JF, Lin H, Xu JL, Wu H, Li YY (2012) Electrochemical Mineralization of Perfluorocarboxylic Acids (PFCAs) by Ce-doped Modified Porous Nano-crystalline PbO2 Film Electrode. Environ Sci Technol, doi: 10.1021/es302148z

  27. Lin H, Niu JF, Ding SY, Zhang LL (2012) Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Water Res 46(7):2281–2289

    Article  CAS  Google Scholar 

  28. Kröger D, Liley M, Schiweek W, Skerra A, Vogel H (1999) Immobilization of histidine-tagged proteins on gold surfaces using chelator thioalkanes. Biosens Bioelectron 14:155–161

    Article  Google Scholar 

  29. Balland V, Hureau C, Cusano AM, Liu Y, Tron T, Limoges B (2008) Oriented Immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes. Chem Eur J 14:7186–7192

    CAS  Google Scholar 

  30. Liu YC, Rieben N, Iversen L, Sørensen BS, Park J, Nygård J, Martinez KL (2010) Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology 21:245105

    Article  Google Scholar 

  31. Ganesana M, Istarnboulie G, Marty JL, Noguer T, Andreescu S (2011) Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens Bioelectron 30:43–48

    Article  CAS  Google Scholar 

  32. Chen HX, Lee M, Lee J, An WG, Choi HJ, Kim SH, Koh K (2008) Building a novel vitronectin assay by immobilization of integrin on calixarene monolayer. Talanta 75:99–103

    CAS  Google Scholar 

  33. Chen HX, Gal YS, Kim SH, Choi HJ, Oh MC, Lee J, Koh K (2008) Potassium ion sensing using a self-assembled calix[4]crown monolayer by surface plasmon resonance. Sens Actuators B 133:577–581

    Article  Google Scholar 

  34. Lo Y-S, Nam DH, So H-M, Chang H, Kim J, Kim Y, Lee J-O (2009) Oriented immobilization of Antibody fragments on Ni-Decorated singlewalled carbon nanotube devices. ACSNANO 3:3649–3655

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61275085, 31100560, 81070511), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50108) and the Ministry for Health, Welfare & Family Affairs, Republic of Korea (A1109111010000200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhou Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Liu, F., Koh, K. et al. Sensitive detection of tuberculosis using nanoparticle-enhanced surface plasmon resonance. Microchim Acta 180, 431–436 (2013). https://doi.org/10.1007/s00604-013-0943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0943-5

Keywords

Navigation