Skip to main content
Log in

Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18 % and 5 %, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies.

Schematic diagram of Ab-Ag interaction on MNPs confined Au surface (left) and SPR study on the immunoactivity of BSA adsorbed on MNPs (right).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: NBM 8:147–166

    Article  CAS  Google Scholar 

  2. Pividori MI, Alegret S (2010) Micro and nanoparticles in biosensing systems for food safety and environmental monitoring. An example of converging technologies. Microchim Acta 170:227–242

    Article  CAS  Google Scholar 

  3. Xia YS, Zhu CQ (2009) Interaction of CdTe nanocrystals with thiol-containing amino acids at different pH: a fluorimetric study. Microchim Acta 164:29–34

    Article  CAS  Google Scholar 

  4. Chhabra R, Sharma J, Wang H, Zou S, Lin S, Yan H et al (2009) Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20:485201–485210

    Article  Google Scholar 

  5. Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  CAS  Google Scholar 

  6. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  7. Service RF (2003) Nanomaterials show signs of toxicity. Science 300:243

    Article  Google Scholar 

  8. Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424:246–248

    Article  CAS  Google Scholar 

  9. Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O’Neill O, et al (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. London: The Royal Society & The Royal Academy of Engineering Report: 61–64

  10. Chen Z, Meng H, Xing GM, Chen CY, Zhao YL (2006) Acute toxicological effects of copper nanopaticles in vivo. Toxicol Lett 263:109–120

    Article  Google Scholar 

  11. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW et al (2006) Acute toxicity of nano- and micro-scale zine powder in healthy adult mice. Toxicol Lett 161:115–123

    Article  CAS  Google Scholar 

  12. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, healthy and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  13. Amano T, Toyooka T, Ibuki Y (2010) Preraration of DNA-adsorbed TiO2 particles-augmentation of performance for environmental purification by increasing DNA adsorption by external Ph regulation. Sci Total Environ 408:480–485

    Article  CAS  Google Scholar 

  14. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  Google Scholar 

  15. Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5:121–126

    Article  CAS  Google Scholar 

  16. Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1:157–168

    Article  CAS  Google Scholar 

  17. Kwon JT, Hwang SK, Jin H et al (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6

    Article  Google Scholar 

  18. Kwon JT, Kim DS, Minai-Tehrani A et al (2009) Inhaled fluorescent magnetic nanoparticles induced extramedullary hematopoiesis in the spleen of mice. J Occup Health 5:423–431

    Article  Google Scholar 

  19. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  20. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C et al (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429

    Article  CAS  Google Scholar 

  21. Jang D, Lee HY, Park M, Nam SR, Hong JI (2010) Nano- and micro-structure fabrication by using a three-component system. Chemistry 16:4836–4842

    Article  CAS  Google Scholar 

  22. An H, Liu Q, Ji Q, Jin B (2010) DNA binding and aggregation by carbon nanoparticles. J Biochem Biophys Res Commun 393:571–576

    Article  CAS  Google Scholar 

  23. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. J Occup Environ 61:727–728

    Article  CAS  Google Scholar 

  24. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM et al (2006) Functionalization density dependence of single-wall carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  CAS  Google Scholar 

  25. Konry T, Bale SS, Bhushan A, Shen K, Seker E, Polyak B et al (2011) Particles and microfluidics merged: perspectives of highly sensitive diagniostic detection. Microchim Acta 176:251–269

    Google Scholar 

  26. Pappert G, Rieger M, Niessner R, Seidel M (2010) Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. Coli Microchim Acta 168:1–8

    Article  CAS  Google Scholar 

  27. Huang MM, Qiao ZW, Miao F, Jia N, Shen HB (2009) Biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging of pancreas cancer. Microchim Acta 167:27–34

    Article  CAS  Google Scholar 

  28. Buyukhatipoglu K, Clyne AM (2010) Superparamagnetic iron oxide nanoparticles change endothelial cellmorphology and mechanics via reactive oxygen species formation. J Biomed Mater Res 96:186–195

    Google Scholar 

  29. Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra A, Prashant CK, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed 5:983–989

    Article  CAS  Google Scholar 

  30. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  31. Hong RY, Li JH, Zhang SZ, Li HZ, Zheng Y, Jm D, Wei DG (2009) Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids. Appl Surf Sci 255:3485–3492

    Article  CAS  Google Scholar 

  32. Shukla A, Patra MK, Mathew M, Songara S, Singh VK, Gowd GS, Vadera SR, Kumar N (2010) Preparation and characterization of biocompatible and water-dispersible SPIONs. Adv Sci Lett 3:161–167

    Article  CAS  Google Scholar 

  33. Oh SW, Moon JD, Lim HJ, Park SY, Kim T, Park J et al (2005) Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB 1335–1337

  34. Li X, Peng YH, Qu XG (2006) Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res 34:3670–3676

    Article  CAS  Google Scholar 

  35. Dong H, Cao X, Li CM, Hu WH (2008) An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: Comparison between SPR and electrochemical responses from polymer formation to protein immunosensing. Biosens Bioelectron 23:1055–1062

    Article  CAS  Google Scholar 

  36. Hu WH, Li CM, Dong H (2008) Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors. Anal Chim Acta 630:67–74

    Article  CAS  Google Scholar 

  37. Malmsten M (1998) Formation of adsorbed protein layer. J Colloid Interface Sci 207:186–199

    Article  CAS  Google Scholar 

  38. Chen HX, Huang JY, Lee J, Hwang S, Koh K (2010) Surface plasmon resonance spectroscopic characterization of antibody orientation and activity on the calixarene monolayer. Sens Actuators, B 147:548–553

    Article  Google Scholar 

  39. Sauzedde F, Elaissari A, Pichot C (2009) Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. J Colloid Polym Sci 277:846–855

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 31100560, 81172503), Innovation Program of the Shanghai Municipal Education Commission (11YZ07) and by SRF for ROCS, SEM and the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Chen or Yongmei Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, Q., Ding, X., Chen, Y. et al. Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins. Microchim Acta 178, 301–307 (2012). https://doi.org/10.1007/s00604-012-0837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0837-y

Keywords

Navigation