Skip to main content
Log in

Detection of Helicobacter pylori with a nanobiosensor based on fluorescence resonance energy transfer using CdTe quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for the sensitive determination of Helicobacter that is based on fluorescence resonance energy transfer using two oligonucleotide probes labeled with CdTe quantum dots (QDs) and 5-carboxytetramethylrhodamine (Tamra) respectively. QDs labeled with an amino-modified first oligonucleotide, and a Tamra-labeled second oligonucleotide were added to the DNA targets upon which hybridization occurred. The resulting assembly brings the Tamra fluorophore (the acceptor) and the QDs (the donor) into close proximity and causes fluorescence resonance energy transfer (FRET) to occur upon photoexcitation of the donor. In the absence of target DNA, on the other hand, the probes are not ligated, and no emission by the Tamra fluorophore is produced due to the lack of FRET. The feasibility of the method was demonstrated by the detection of a synthetic 210-mer nucleotide derived from Helicobacter on a nanomolar level. This homogeneous DNA detection scheme is simple, rapid and efficient, does not require excessive washing and separation steps, and is likely to be useful for the construction of a nanobiosensor for Helicobacter species.

We report a method for the sensitive determination of Helicobacter that is based on fluorescence resonance energy transfer using two oligonucleotide probes labeled with CdTe quantum dots and 5-carboxytetramethylrhodamine respectively.

The feasibility of the method was demonstrated by the detection of a synthetic 210-mer nucleotide derived from Helicobacter on a nanomolar level. This homogeneous DNA detection scheme is simple, rapid and efficient, does not require excessive washing and separation steps, and is likely to be useful for the construction of a nanobiosensor for Helicobacter species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Amsterdam K, Van Vliet AHM, Kusters JG, Van Der Ende A (2006) Of microbe and man: determinants of Helicobacter pylori-related diseases. FEMS Microbiol Rev 30(1):131–156. doi:10.1111/j.1574-6976.2005.00006.x

    Article  Google Scholar 

  2. Buszewski B, Kłodzińska E, Dahm H, Rózycki H, Szeliga J, Jackowski M (2007) Rapid identification of Helicobacter pylori by capillary electrophoresis: an overview. Biomed Chromatogr 21(2):116–122. doi:10.1002/bmc.733

    Article  CAS  Google Scholar 

  3. Su X, Li SFY (2001) Serological determination of Helicobacter pylori infection using sandwiched and enzymatically amplified piezoelectric biosensor. Anal Chim Acta 429(1):27–36. doi:10.1016/s0003-2670(00)01262-9

    Article  CAS  Google Scholar 

  4. Gao Y, Lin FYH, Hu G, Sherman PM, Li D (2005) Development of a novel electrokinetically driven microfluidic immunoassay for the detection of Helicobacter pylori. Anal Chim Acta 543(1–2):109–116. doi:10.1016/j.aca.2005.04.032

    Article  CAS  Google Scholar 

  5. Seia MA, Pereira SV, Fontán CA, De Vito IE, Messina GA, Raba J (2012) Laser-induced fluorescence integrated in a microfluidic immunosensor for quantification of human serum IgG antibodies to Helicobacter pylori. Sensor Actuator B Chem 168:297–302. doi:10.1016/j.snb.2012.04.026

    Article  CAS  Google Scholar 

  6. Sun C, Zhang L, Jiang J, Shen G, Yu R (2010) Electrochemical DNA biosensor based on proximity-dependent DNA ligation assays with DNAzyme amplification of hairpin substrate signal. Biosens Bioelectron 25(11):2483–2489. doi:10.1016/j.bios.2010.04.012

    Article  CAS  Google Scholar 

  7. García T, Casero E, Revenga-Parra M, Martín-Benito J, Pariente F, Vázquez L, Lorenzo E (2008) Architectures based on the use of gold nanoparticles and ruthenium complexes as a new route to improve genosensor sensitivity. Biosens Bioelectron 24(2):184–190. doi:10.1016/j.bios.2008.03.034

    Article  Google Scholar 

  8. Ly SY, Yoo HS, Choa SH. Diagnosis of Helicobacter pylori bacterial infections using a voltammetric biosensor. J Microbiol Meth. doi:10.1016/j.mimet.2011.07.002

  9. Del Pozo MV, Alonso C, Pariente F, Lorenzo E (2005) DNA biosensor for detection of Helicobacter pylori using phen-dione as the electrochemically active ligand in osmium complexes. Anal Chem 77(8):2550–2557. doi:10.1021/ac0489263

    Article  Google Scholar 

  10. Angelidis AS, Tirodimos I, Bobos M, Kalamaki MS, Papageorgiou DK, Arvanitidou M (2011) Detection of Helicobacter pylori in raw bovine milk by fluorescence in situ hybridization (FISH). Int J Food Microbiol 151(2):252–256. doi:10.1016/j.ijfoodmicro.2011.09.007

    Article  CAS  Google Scholar 

  11. Prokhorenko IA, Malakhov AD, Kozlova AA, Momynaliev K, Govorun VM, Korshun VA (2006) Phenylethynylpyrene-labeled oligonucleotide probes for excimer fluorescence SNP analysis of 23S rRNA gene in clarithromycin-resistant Helicobacter pylori strains. Mutat Res Fund Mol Mech Mutagen 599(1–2):144–151. doi:10.1016/j.mrfmmm.2006.02.007

    Article  CAS  Google Scholar 

  12. Colding H, Hartzen SH, Roshanisefat H, Andersen LP, Krogfelt KA (1999) Molecular methods for typing of Helicobacter pylori and their applications. FEMS Immunol Med Microbiol 24(2):193–199. doi:10.1016/s0928-8244(99)00026-7

    Article  CAS  Google Scholar 

  13. Cheong YM, Ng YP, Ong SC, Chang PT, Pillai SS (1990) Detection of Helicobacter pylori from endoscopic biopsies and the biochemical characteristics of these isolates. Malays J Pathol 12(2):97–100

    CAS  Google Scholar 

  14. Solari CA, Araruna RP, Reis EM, Hofer E, Dias G, Moraes G, Basilio CA, Rodriguez CM, Luna LL (1994) Helicobacter pylori in dyspeptic children and adults: endoscopic, bacteriologic and histologic correlations. Memórias do Instituto Oswaldo Cruz 89(4):581–586

    Article  CAS  Google Scholar 

  15. Zaitoun AM (1993) Histology compared with chemical testing for urease for rapid detection of Helicobacter pylori in gastric biopsy specimens. J Clin Pathol 46(7):684–685

    Article  CAS  Google Scholar 

  16. Best LM, Van Zanten SJOV, Sherman PM, Bezanson GS (1994) Serological detection of Helicobacter pylori antibodies in children and their parents. J Clin Microbiol 32(5):1193–1196

    CAS  Google Scholar 

  17. Liu P, Hun X, Qing H (2011) Dendrimer-based biosensor for chemiluminescent detection of DNA hybridization. Microchimica Acta 175(1–2):201–207. doi:10.1007/s00604-011-0637-9

    CAS  Google Scholar 

  18. Jiang G, Susha AS, Lutich AA, Stefani FD, Feldmann J, Rogach AL (2009) Cascaded FRET in conjugated polymer/Quantum Dot/Dye-labeled DNA complexes for DNA hybridization detection. ACS Nano 3(12):4127–4131. doi:10.1021/nn901324y

    Article  CAS  Google Scholar 

  19. Gill R, Willner I, Shweky I, Banin U (2005) Fluorescence resonance energy transfer in CdSe/ZnS−DNA conjugates: probing hybridization and DNA cleavage. J Phys Chem B 109(49):23715–23719. doi:10.1021/jp054874p

    Article  CAS  Google Scholar 

  20. He Y, Nie F (2011) Chemiluminescence assay for angiogenin using a signal amplification technology based on the cleavage of nicking endonucleases. Microchim Acta 174(3–4):375–382. doi:10.1007/s00604-011-0634-z

    CAS  Google Scholar 

  21. Lu W, Qin X, Luo Y, Chang G, Sun X (2011) CdS quantum dots as a fluorescent sensing platform for nucleic acid detection. Microchim Acta 175(3–4):355–359. doi:10.1007/s00604-011-0657-5

    CAS  Google Scholar 

  22. Xing J, Cheung HC (1995) Internal movement in myosin subfragment 1 detected by fluorescence resonance energy transfer. Biochemistry® 34(19):6475–6487

    Article  CAS  Google Scholar 

  23. Lad A, Agrawal YK (2012) DNA-labeled gold-based optical nanobiosensor monitoring DNA–mitoxantrone interaction. BioNanoSci 2(1):9–15. doi:10.1007/s12668-011-0030-5

    Article  Google Scholar 

  24. Appelblom H, Sipponen A, Valanne A, Soukka T, Lövgren T, Niemelä P (2011) Antibody-free lanthanide-based fluorescent probe for determination of protein tyrosine kinase and phosphatase activities. Microchim Acta 172(1–2):25–29. doi:10.1007/s00604-010-0450-x

    CAS  Google Scholar 

  25. Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. Trac-Trends Anal Chem 25(3):207–218. doi:10.1016/j.trac.2005.07.008

    Article  CAS  Google Scholar 

  26. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446. doi:10.1038/nmat1390

    Article  CAS  Google Scholar 

  27. Zhong W, Zhang C, Gao Q, Li H (2012) Highly sensitive detection of lead(II) ion using multicolor CdTe quantum dots. Microchim Acta 176(1–2):101–107. doi:10.1007/s00604-011-0695-z

    CAS  Google Scholar 

  28. Liu P, Wang Q, Li X. Studies on CdSe/l-cysteine quantum dots synthesized in aqueous solution for biological labeling. J Phys Chem C 0 (0). doi:10.1021/jp901292q

  29. Mattoussi H, Medintz IL, Clapp AR, Goldman ER, Jaiswal JK, Simon SM, Mauro JM (2004) Luminescent quantum dot-bioconjugates in immunoassays, FRET, biosensing, and imaging applications. J Assoc Lab Autom 9(1):28–32. doi:10.1016/s1535-5535(03)00083-2

    Article  CAS  Google Scholar 

  30. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150. doi:10.1021/ja002535y

    Article  CAS  Google Scholar 

  31. Tran PT, Anderson GP, Mauro JM, Mattoussi H (2002) Use of luminescent CdSe–ZnS nanocrystal bioconjugates in quantum dot-based nanosensors. Phys Status Solidi (b) 229(1):427–432. doi:10.1002/1521-3951(200201)229:1<427::aid-pssb427>3.0.co;2-k

    Article  CAS  Google Scholar 

  32. Medintz I, Clapp A, Melinger J, Deschamps J, Mattoussi H (2005) A reagentless biosensing assembly based on quantum dot–donor Förster resonance energy transfer. Adv Mater 17(20):2450–2455. doi:10.1002/adma.200500722

    Article  CAS  Google Scholar 

  33. Wang J-H, Liu T-C, Cao Y-C, Hua X-F, Wang H-Q, Zhang H-L, Li X-Q, Zhao Y-D (2007) Fluorescence resonance energy transfer between FITC and water-soluble CdSe/ZnS quantum dots. Colloids Surf A Physicochem Eng Asp 302(1–3):168–173. doi:10.1016/j.colsurfa.2007.02.018

    Article  CAS  Google Scholar 

  34. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218(1):1–13. doi:10.1006/abio.1994.1134

    Article  CAS  Google Scholar 

  35. Kagan CR, Murray CB, Bawendi MG (1996) Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B 54(12):8633–8643

    Article  CAS  Google Scholar 

  36. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2003) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126(1):301–310. doi:10.1021/ja037088b

    Article  Google Scholar 

  37. Shamsipur M, Shanehsaz M, Khajeh K, Mollania N, Kazemi SH (2012) A novel quantum dot-laccase hybrid nanobiosensor for low level determination of dopamine. Analyst 137:5553–5559. doi:10.1039/C2AN36035G

    Google Scholar 

  38. Georges J, Arnaud N, Parise L (1996) Limitations arising from optical saturation in fluorescence and thermal lens spectrometries using pulsed laser excitation: application to the determination of the fluorescence quantum yield of rhodamine 6G. Appl Spectrosc 50(12):1505–1511

    Article  CAS  Google Scholar 

  39. Chen Q, Ma Q, Wan Y, Su X, Lin Z, Jin Q (2005) Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots. Luminescence 20(4–5):251–255. doi:10.1002/bio.840

    Article  CAS  Google Scholar 

  40. Li J, Mei F, Li W-Y, He X-W, Zhang Y-K (2008) Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II). Spectrochim Acta A Mol Biomol Spectrosc 70(4):811–817. doi:10.1016/j.saa.2007.09.017

    Article  Google Scholar 

  41. Pons T, Medintz IL, Wang X, English DS, Mattoussi H (2006) Solution-phase single quantum dot fluorescence resonance energy transfer. J Am Chem Soc 128(47):15324–15331. doi:10.1021/ja0657253

    Article  CAS  Google Scholar 

  42. Lee SF, Osborne MA (2007) Photodynamics of a single quantum dot: fluorescence activation, enhancement, intermittency, and decay. J Am Chem Soc 129(29):8936–8937. doi:10.1021/ja071876+

    Article  CAS  Google Scholar 

  43. Fan H, Ju P, Ai SY (2010) Controllable synthesis of CdSe nanostructures with tunable morphology and their application in DNA biosensor of Avian Influenza Virus. Sensor Actuator B Chem 149(1):98–104. doi:10.1016/j.snb.2010.06.023

    Article  Google Scholar 

  44. Algar WR, Krull UJ (2007) Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal Chim Acta 581(2):193–201

    Article  CAS  Google Scholar 

  45. García T, Revenga-Parra M, Abruña HD, Pariente F, Lorenzo E (2008) Single-mismatch position-sensitive detection of DNA based on a bifunctional ruthenium complex. Anal Chem 80(1):77–84. doi:10.1021/ac071095r

    Article  Google Scholar 

  46. Revenga-Parra M, García T, Lorenzo E, Pariente F (2007) Comprehensive study of interactions between DNA and new electroactive Schiff base ligands. Application to the detection of singly mismatched Helicobacter pylori sequences. Biosens Bioelectron 22(11):2675–2681. doi:10.1016/j.bios.2006.11.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Afshin Mohsenifar or Mojtaba Shamsipur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanehsaz, M., Mohsenifar, A., Hasannia, S. et al. Detection of Helicobacter pylori with a nanobiosensor based on fluorescence resonance energy transfer using CdTe quantum dots. Microchim Acta 180, 195–202 (2013). https://doi.org/10.1007/s00604-012-0906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0906-2

Keywords

Navigation