Skip to main content
Log in

DNA-Labeled Gold-Based Optical Nanobiosensor Monitoring DNA–Mitoxantrone Interaction

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present study focuses on the construction of optical nanobiosensor to determine toxicological behavior of mitoxantrone (MTX), an anti-tumor drug. For this purpose, gold nanoparticles (AuNPs) were labeled with DNA, respectively combining the physicochemical detector component with the biological analytical component. Fluorescence resonance energy transfer (FRET) phenomenon works as the basic principle for the determination of MTX–DNA interaction by spectrofluorometry. Mitoxantrone intercalates with the DNA and produces MTX-DNA adduct, which restricts protein synthesis and causes excessive production of free radicals in the myocardium that could eventually lead to cardiac arrest. Mapping the adverse reaction of MTX with DNA at molecular level, a conformational change within the nanobiosensor complex was evident that increased the distance between the fluorescent/quencher molecules. The consequent changes in the fluorescence spectrum of the sensor due to FRET modulation by varying concentrations of MTX proved the basis of the tox-screen. Paracetamol, an analgesic agent, was used as controlled drug in this study. Results have demonstrated that the optical nanobiosensor is rapid and sensitive with a detection limit up to 1 μg of MTX interaction, illustrating how it is a feasible technique for surveillance of drug–DNA interaction in molecular toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xueqing, Z., Qin, G., Daxiang, C. (2009). Recent advances in nanotechnology applied to biosensors. Sensors, 9, 1033–1053. doi:10.3390/s90201033.

    Article  Google Scholar 

  2. Sherry, L. J., Jin, R., Mirkin, C. A., Schatz, G. C., Van Duyne, R. P. (2006). Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Letters, 6, 2060–2065. doi:10.1021/nl061286u.

    Article  Google Scholar 

  3. Campbell, R. E. (2009). Fluorescent-protein-based biosensors: modulation of energy transfer as a design principle. Analytical Chemistry, 81, 5972–5979. doi:10.1021/ac802613w.

    Article  Google Scholar 

  4. Sahoo, H. (2011). Förster resonance energy transfer—A spectroscopic nanoruler: Principle and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12, 20–30. doi:10.1016/j.jphotochemrev.2011.05.001.

    Article  Google Scholar 

  5. Sekatskii, S. K. (2004). Fluorescence resonance energy transfer scanning near-field optical microscopy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362, 901–919. doi:10.1098/rsta.2003.1354.

    Article  Google Scholar 

  6. Stepensky, D. (2007). FRETcalc plugin for calculation of FRET in non-continuous intracellular compartments. Biochemical and Biophysical Research Communications, 359, 752–758. doi:10.1016/j.bbrc.2007.05.180.

    Article  Google Scholar 

  7. Marques, B. F., & Schneider, J. M. (2006). Effect of electrostatic interactions on binding and retention of DNA oligomers to PNA liposomes assessed by FRET measurements. Colloids and Surfaces. B, Biointerfaces, 53, 1–8. doi:10.1016/j.colsurfb.2006.07.007.

    Article  Google Scholar 

  8. Corry, B., Jayatilaka, D., Rigby, P. (2005). A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries. Biophysical Journal, 89, 3822–3836. doi:10.1529/biophysj.105.069351.

    Article  Google Scholar 

  9. Kaláb, P., & Soderholm, J. (2010). The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase. Methods, 51, 220–232. doi:10.1016/j.ymeth.2010.01.022.

    Article  Google Scholar 

  10. Ge, S., Lu, J., Yan, M., Yu, F., Yu, J., Sun, X. (2011). Fluorescence resonance energy transfer sensor between quantum dot donors and neutral red acceptors and its detection of BSA in micelles. Dyes and Pigments, 91, 304–308. doi:10.1016/j.dyepig.2011.05.013.

    Article  Google Scholar 

  11. Jung, J. H., Lee, M. H., Kim, H. J., Jung, H. S., Lee, S. Y., Shin, N. R., No, K., Kim, J. S. (2009). Metal ion induced FRET on–off in naphthyl-pyrenyl pendent tetrahomodioxacalix[4]arene. Tetrahedron Letters, 50, 2013–2016. doi:10.1016/j.tetlet.2009.02.083.

    Article  Google Scholar 

  12. Chen, J., Zheng, A., Chen, A., Gao, Y., He, C., Kai, X., Wu, G., Chen, Y. (2007). A functionalized gold nanoparticles and Rhodamine 6 G based fluorescent sensor for high sensitive and selective detection of mercury (II) in environmental water sample. Analytica Chimica Acta, 599, 134–142. doi:10.1016/j.aca.2007.07.074.

    Article  Google Scholar 

  13. Ziegler, N., Bätz, J., Zabel, U., Lohse, M. J., Hoffmann, C. (2011). FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors. Bioorganic & Medicinal Chemistry, 19, 1048–1054. doi:10.1016/j.bmc.2010.07.060.

    Article  Google Scholar 

  14. Giannetti, A., Citti, L., Domenici, C., Tedeschi, L., Baldini, F., Wabuyele, M. B., Vo-Dinh, T. (2006). FRET-based protein–DNA binding assay for detection of active NF-kB. Sensors and Actuators B, 113(2006), 649–654. doi:10.1016/j.snb.2005.07.014.

    Article  Google Scholar 

  15. Cody Stringer, R., Schommer, S., Hoehn, D., Grant, S. A. (2008). Development of an optical biosensor using gold nanoparticles and quantum dots for the detection of porcine reproductive and respiratory syndrome virus. Sensors and Actuators B, 134, 427–431. doi:10.1016/j.snb.2008.05.018

  16. Zhu, J., Yuan, H., Chan, W., Lee, A. W. M. (2010). A FRET fluorescent chemosensor SPAQ for Zn2+ based on a dyad bearing spiropyran and 8-aminoquinoline unit. Tetrahedron Letters, 51, 3550–3554. doi:10.1016/j.tetlet.2010.04.127.

    Article  Google Scholar 

  17. He, G., Zhang, X., He, C., Zhao, X., Duan, C. (2010). Ratiometric fluorescence chemosensors for copper(II) and mercury(II) based on FRET systems. Tetrahedron, 66, 9762–9768. doi:10.1016/j.tet.2010.09.043.

    Article  Google Scholar 

  18. Liu, J., & Lu, Y. (2006). Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nature Protocols, 1, 246–252. doi:10.1038/nprot.2006.38.

    Article  Google Scholar 

  19. Zuo, X., Wu, H., Toh, J., Li, S. F. Y. (2010). Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles. Talanta, 82, 1642–1646. doi:10.1016/j.talanta.2010.07.031.

    Article  Google Scholar 

  20. Ou, L., Jin, P. Y., Chu, X., Jiang, J. H., Yu, R. Q. (2010). Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Analytical Chemistry, 82, 6015–6024. doi:10.1038/nprot.2006.38.

    Article  Google Scholar 

  21. Sandstrom, P., Boncheva, M., Åkerman, B. (2003). Nonspecific and thiol-specific binding of DNA to gold nanoparticles. Langmuir, 19, 7537–7543. doi:10.1021/la034348u.

    Article  Google Scholar 

  22. Sandstrom, P., & Akerman, B. (2004). Electrophoretic properties of DNA-modified colloidal gold nanoparticles. Langmuir, 20(2004), 4182–4186. doi:10.1021/la036263z.

    Article  Google Scholar 

  23. Wu, Z. S., Jiang, J. H., Fu, L., Shen, G. L., Yu, R. Q. (2006). Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Analytical Biochemistry, 353, 22–29. doi:10.1016/j.ab.2006.01.018.

    Article  Google Scholar 

  24. Fritzsche, W. (2001). DNA-gold conjugates for the detection of specific molecular interactions. Reviews in Molecular Biotechnology, 82, 37–46. doi:10.1016/S1389-0352(01)00028-9.

    Article  Google Scholar 

  25. Zhang, H., Wang, L., Jiang, W. (2011). Label free DNA detection based on gold nanoparticles quenching fluorescence of Rhodamine B. Talanta, 85, 725–729. doi:10.1016/j.talanta.2011.04.057.

    Article  Google Scholar 

  26. Hea, Y., Zhang, X., Zeng, K., Zhang, S., Baloda, M., Gurung, A. S., Liu, G. (2011). Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosensors and Bioelectronics, 26, 4464–4470. doi:10.1016/j.bios.2011.05.003.

    Article  Google Scholar 

  27. Chávez, J. L., Lyon, W., Loughnane, N. K., Stone, M. O. (2010). Theophylline detection using an aptamer and DNA–gold nanoparticle conjugates. Biosensors and Bioelectronics, 26, 23–28. doi:10.1016/j.bios.2010.04.049.

    Article  Google Scholar 

  28. Seidel, C. A. M., Schulz, A., Sauer, M. H. M. (1996). Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. Journal of Physical Chemistry, 100, 5541–5553. doi:10.1021/jp951507c

    Google Scholar 

  29. Hongslo, J. K., Smith, C. V., Brunborg, G., Søderlund, E. J., Holme, A. J. (1994). Genotoxicity of paracetamol in mice and rats. Mutagenesis, 9, 93–100. doi:10.1093/mutage/9.2.93.

    Article  Google Scholar 

  30. Dybing, E., Holme, J. A., Gordon, W. P., Soderlund, E. J., Dahlin, D. C., Nelson, S. D. (1984). Genotoxicity studies with paracetamol. Mutation Research/Genetic Toxicology, 138, 21–36. doi:10.1016/0165-1218(84)90081-8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Cipla Ltd (Mumbai, India) for providing mitoxantrone for monitoring toxicological studies by Nanodevice. We are highly indebted to Bjorn Akerman, Department of Chemistry and Bioscience, Chalmers University of Technology, Kemivagen, Goteborg, Sweden for providing necessary information on DNA–AuNP assembly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitkumar Lad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lad, A., Agrawal, Y.K. DNA-Labeled Gold-Based Optical Nanobiosensor Monitoring DNA–Mitoxantrone Interaction. BioNanoSci. 2, 9–15 (2012). https://doi.org/10.1007/s12668-011-0030-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-011-0030-5

Keywords

Navigation